Abstract
We introduce identifiability conditions for the blind source separation (BSS) problem, combining the second and fourth order statistics. We prove that under these conditions, well known methods (like eigen-value decomposition and joint diagonalization) can be applied with probability one, i.e. the set of parameters for which such a method doesn’t solve the BSS problem, has a measure zero.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Belouchrani and A. Cichocki A. “Robust whitening procedure in blind separation context”. Electronics Letters, Vol. 36 No. 24, pp. 2050–2051, 2000.
A. Belouchrani, K. A. Meraim, J.-P. Cardoso and E. Moulines “A blind source separation technique using second order statistics.” IEEE Trans. on Signal Processing, Vol. 45, no. 2, pp. 434–44, Feb. 1997
J.-F. Cardoso, “High-order contrasts for independent component analysis” Neural Computation, vol. 11, no 1, pp. 157–192, Jan. 1999.
C. Chang, Z. Ding, S. F. Yau and F. H. Y. Chan“A matrix-pencil approach to blind separation of colored nonstationary signals”. IEEE Trans. Signal Proc., Vol. 48, No. 3, pp. 900–907, Mar. 2000.
C. Chang, S.F. Yau, P. Kwok, F.H.Y. Chan, F.K. Lam, Uncorrelated and component analysis for blind source separation, Circuits Systems and Signal Processsing, Vol. 18, No. 3, pp. 225–239, 1999.
A. Cichocki and S. Amari. Adaptive Blind Signal and Image Processing. John Wiley, Chichester, 2002.
A. Cichocki, and R. Thawonmas “ On-line algorithm for blind signal extraction of arbitrarily distributed, but temporally correlated sources using second order statistics”. Neural Processing Letters Vol. 12, pp. 91–98, Aug. 2000.
I. Gorodnitsky and A. Belouchrani, “Joint cumulant and correlation based signal separation with application of EEG data analysis”, Proc. 3-rd Int. Conf. on Independent Component Analysis and Signal Separation, San Diego, California, Dec. 9-13, 2001, pp. 475–480.
A. Edelman, T. A. Arias and A. T. Smith“The geometry of algorithms with orthogonality constraints”. SIAM J. Matrix Anal. Appl., Vo. 20, No. 2, pp. 303–353, 1998.
G. H. Golub and C. F. Van Loan Matrix Computation. J. Hopkins Univ. Press, 1989.
A. Hyvarinen, J. Karhunen and E. Oja, “Independent Component Analysis”, John Wiley & Sons, 2001.
C. L. Nikias and A. Petropulu“Higher-order spectra analysis. A nonlinear signal processing framework”, Prentice Hall Signal Processing Series, 1993.
L. Tong, R. Liu, V.C. Soon and Y.F. Huang, Indeterminacy and Identifiability of Blind Identification, IEEE Transactions on Circuits and Systems, Vol. 38, No. 5, pp. 499–509, May 1991.
L. Tong, Y. Inouye and R. Liu “ A finite-step global algorithm for the parameter estimation of multichannel MA processes”. IEEE Trans. Signal Proc., 40(10): 2547–2558, 1992.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Georgiev, P., Cichocki, A. (2002). Robust Blind Source Separation Utilizing Second and Fourth Order Statistics. In: Dorronsoro, J.R. (eds) Artificial Neural Networks — ICANN 2002. ICANN 2002. Lecture Notes in Computer Science, vol 2415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46084-5_188
Download citation
DOI: https://doi.org/10.1007/3-540-46084-5_188
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44074-1
Online ISBN: 978-3-540-46084-8
eBook Packages: Springer Book Archive