Abstract
This paper describes how the fundamental principles of GAs can be hybridized with classical optimization techniques for the design of an evolutive algorithm for neuro-fuzzy systems. The proposed algorithm preserves the robustness and global search capabilities of GAs and improves on their performance, adding new capabilities to fine-tune the solutions obtained.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. A. Dickerson and B. Kosko. Fuzzy function approximation with ellipsoidal rules. IEEE Trans. Syst. Man and Cyber.-Part B, 26(4):542–560, 1996.
J. S. R. Jang, C. T. Sun, and E. Mizutani. Neuro-Fuzzy and Soft Computing. Prentice-Hall, ISBN 0-13-261066-3, 1997.
Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, 3rd edition, 1996.
H. Pomares, I. Rojas, J. Ortega, J. González, and A. Prieto. A systematic approach to a self-generating fuzzy rule-table for function approximation. IEEE Trans. Syst. Man and Cyber.-Part B, 30(3):431–447, 2000.
M. Russo and G. Patané. Improving the lbg algorithm. In International Work-Conference on Artificial and Natural Neural Networks, IWANN99, pages 621–630, 1999.
M. Srinivas and L. M. Patnaik. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transattions on Systems, Man and Cybernetics, 24(4):656–666, 1994.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
González, J., Rojas, I., Pomares, H., Prieto, A., Goser, K. (2002). Evolutionary Training of Neuro-fuzzy Patches for Function Approximation. In: Dorronsoro, J.R. (eds) Artificial Neural Networks — ICANN 2002. ICANN 2002. Lecture Notes in Computer Science, vol 2415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46084-5_91
Download citation
DOI: https://doi.org/10.1007/3-540-46084-5_91
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44074-1
Online ISBN: 978-3-540-46084-8
eBook Packages: Springer Book Archive