Skip to main content

Mutual Authentication for Low-Power Mobile Devices

  • Conference paper
  • First Online:
Financial Cryptography (FC 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2339))

Included in the following conference series:

Abstract

We propose methods for mutual authentication and key exchange. Our methods are well suited for applications with strict power consumption restrictions, such as wireless medical implants and contactless smart cards. We prove the security of our schemes based on the discrete log gap problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Bellare, R. Canetti, and H. Krawczyk. A Modular Approach to the Design and Analysis of Authentication and Key Exchange Protocols. In Proc. of the 30th STOC. ACM Press, New York, 1998.

    Google Scholar 

  2. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against Dictionary Attacks. In Eurocrypt 2000, LNCS 1807, pages 139–155. Springer-Verlag, Berlin, 2000.

    Chapter  Google Scholar 

  3. M. Bellare and P. Rogaway. Random Oracles Are Practical: A Paradigm for Designing Efficient Protocols. In Proc. of the 1st CCS, pages 62–73. ACM Press, New York, 1993.

    Google Scholar 

  4. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In Crypto’93, LNCS 773, pages 232–249. Springer-Verlag, Berlin, 1994.

    Google Scholar 

  5. M. Bellare and P. Rogaway. Provably Secure Session Key Distribution: The Three Party Case. In Proc. of the 27th STOC. ACM Press, New York, 1995.

    Google Scholar 

  6. D. Chaum. Zero-Knowledge Undeniable Signatures. In Eurocrypt’90, LNCS 473, pages 458–464. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  7. D. Chaum and H. vanAntwerpen. Undeniable Signatures. In Crypto’89, LNCS 435, pages 212–216. Springer-Verlag, Berlin, 1990.

    Google Scholar 

  8. W. Diffie and M.E. Hellman. New Directions in Cryptography. IEEE Transactions on Information Theory, IT-22(6):644–654, November 1976.

    Google Scholar 

  9. M. Girault. Self-Certified Public Keys. In Eurocrypt’91, LNCS 547, pages 490–497. Springer-Verlag, Berlin, 1992.

    Google Scholar 

  10. M. Girault and J. Stern. On the Length of Cryptographic Hash-Values used in Identification Schemes. In Crypto’94, LNCS 839, pages 202–215. Springer-Verlag, Berlin, 1994.

    Google Scholar 

  11. R.M. Needham and M.D. Schroeder. Using Encryption for Authentication in Large Networks of Computers. Communications of the ACM, 21:993–999, 1978.

    Article  MATH  Google Scholar 

  12. B.C. Neuman and T. Ts’o. Kerberos: An Authentication Service for Computer Networks. IEEE Communications Magazine, 32(9):33–28, September 1994.

    Google Scholar 

  13. T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric Cryptosystem Transform. In RSA 2001, LNCS 2020, pages 159–175. Springer-Verlag, Berlin, 2001.

    Google Scholar 

  14. T. Okamoto and D. Pointcheval. The Gap-Problems: A New Class of Problems for the Security of Cryptographic Schemes. In PKC 2001, LNCS 1992, pages 104–118. Springer-Verlag, Berlin, 2001.

    Google Scholar 

  15. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind Signatures. Journal of Cryptology, 13(3):361–396, 2000.

    Article  MATH  Google Scholar 

  16. G. Poupard and J. Stern. Security Analysis of a Practical “on the fly” Authentication and Signature Generation. In Eurocrypt’98, LNCS 1403, pages 422–436. Springer-Verlag, Berlin, 1998.

    Google Scholar 

  17. C.P. Schnorr. Efficient Identification and Signatures for Smart Cards. In Crypto’89, LNCS 435, pages 235–251. Springer-Verlag, Berlin, 1990.

    Google Scholar 

  18. D. Shanks. Class Number, a Theory of Factorization, and Genera. In Proceedings of the Symposium on Pure Mathematics, volume 20, pages 415–440. AMS, 1971.

    MathSciNet  Google Scholar 

  19. V. Shoup. On Formal Models for Secure Key Exchange. Technical Report RZ 3120, IBM Research, April 1999.

    Google Scholar 

  20. D.S. Wong and A.H. Chan. Efficient and Mutually Authenticated Key Exchange for Low-Power Computing Devices In Asiacrypt 2001, LNCS. Springer-Verlag, Berlin, 2001. To appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jakobsson, M., Pointcheval, D. (2002). Mutual Authentication for Low-Power Mobile Devices. In: Syverson, P. (eds) Financial Cryptography. FC 2001. Lecture Notes in Computer Science, vol 2339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46088-8_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-46088-8_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44079-6

  • Online ISBN: 978-3-540-46088-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics