Abstract
We present a simple Data Mining Logic (DML) that can express common data mining tasks, like “Find Boolean association rules” or “Find inclusion dependencies.” At the center of the paper is the problem of characterizing DML queries that are amenable to the levelwise search strategy used in the a-priori algorithm. We relate the problem to that of characterizing monotone first-order properties for finite models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In Proc. ACM SIGMOD Int. Conf. Management of Data, pages 207–216, Washington, D.C., 1993.
M. Ajtai and Y. Gurevich. Monotone versus positive. Journal of the ACM, 34(4):1004–1015, 1987.
T. Calders and J. Wijsen. On monotone data mining languages. Technical Report 2001-08, Universitaire Instelling Antwerpen, Department of Mathematics & Computer Science, 2001.
J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.
T. Imielinski and H. Mannila. A database perspective on knowledge discovery. Comm. of the ACM, 39(11):58–64, 1996.
M. Kantola, H. Mannila, K.-J. Räihä, and H. Siirtola. Discovering functional and inclusion dependencies in relational databases. Internat. Journal of Intelligent Systems, 7:591–607, 1992.
L. V. S. Lakshmanan, R. Ng, J. Han, and A. Pang. Optimization of constrained frequent set queries with 2-variable constraints. In Proc. ACM SIGMOD Int. Conf. Management of Data, pages 157–168, 1999.
L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. SchemaSQL—An extension to SQL for multi-database interoperability. To appear in ACM Trans. on Database Systems.
S. Lopes, J.-M. Petit, and L. Lakhal. Efficient discovery of functional dependencies and Armstrong relations. In Proc. 7th Int. Conf. on Extending Database Technology (EDBT 2000), LNCS 1777, pages 350–364. Springer, 2000.
H. Mannila. Methods and problems in data mining. In Proc. Int. Conf. on Database Theory, Delphi, Greece, 1997.
H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.
R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimizations of constrained associations rules. In Proc. ACM SIGMOD Int. Conf. Management of Data, pages 13–24. ACM Press, 1998.
K. A. Ross. Relations with relation names as arguments: Algebra and calculus. In Proc. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 346–353. ACM Press, 1992.
A. Stolboushkin. Finitely monotone properties. In Proc. 10th IEEE Symp. on Logic in Comp. Sci., pages 324–330, 1995.
D. Tsur, J. D. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov, and A. Rosenthal. Query flocks: a generalization of association-rule mining. In Proc. ACM SIGMOD Int. Conf. Management of Data, pages 1–12, 1998.
J. Wijsen, R. Ng, and T. Calders. Discovering roll-up dependencies. In Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, pages 213–222, San Diego, CA, 1999.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Calders, T., Wijsen, J. (2002). On Monotone Data Mining Languages. In: Ghelli, G., Grahne, G. (eds) Database Programming Languages. DBPL 2001. Lecture Notes in Computer Science, vol 2397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46093-4_7
Download citation
DOI: https://doi.org/10.1007/3-540-46093-4_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44080-2
Online ISBN: 978-3-540-46093-0
eBook Packages: Springer Book Archive