Skip to main content

On Monotone Data Mining Languages

  • Conference paper
  • First Online:
Database Programming Languages (DBPL 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2397))

Included in the following conference series:

  • 426 Accesses

Abstract

We present a simple Data Mining Logic (DML) that can express common data mining tasks, like “Find Boolean association rules” or “Find inclusion dependencies.” At the center of the paper is the problem of characterizing DML queries that are amenable to the levelwise search strategy used in the a-priori algorithm. We relate the problem to that of characterizing monotone first-order properties for finite models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In Proc. ACM SIGMOD Int. Conf. Management of Data, pages 207–216, Washington, D.C., 1993.

    Google Scholar 

  2. M. Ajtai and Y. Gurevich. Monotone versus positive. Journal of the ACM, 34(4):1004–1015, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Calders and J. Wijsen. On monotone data mining languages. Technical Report 2001-08, Universitaire Instelling Antwerpen, Department of Mathematics & Computer Science, 2001.

    Google Scholar 

  4. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.

    Google Scholar 

  5. T. Imielinski and H. Mannila. A database perspective on knowledge discovery. Comm. of the ACM, 39(11):58–64, 1996.

    Article  Google Scholar 

  6. M. Kantola, H. Mannila, K.-J. Räihä, and H. Siirtola. Discovering functional and inclusion dependencies in relational databases. Internat. Journal of Intelligent Systems, 7:591–607, 1992.

    Article  MATH  Google Scholar 

  7. L. V. S. Lakshmanan, R. Ng, J. Han, and A. Pang. Optimization of constrained frequent set queries with 2-variable constraints. In Proc. ACM SIGMOD Int. Conf. Management of Data, pages 157–168, 1999.

    Google Scholar 

  8. L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. SchemaSQL—An extension to SQL for multi-database interoperability. To appear in ACM Trans. on Database Systems.

    Google Scholar 

  9. S. Lopes, J.-M. Petit, and L. Lakhal. Efficient discovery of functional dependencies and Armstrong relations. In Proc. 7th Int. Conf. on Extending Database Technology (EDBT 2000), LNCS 1777, pages 350–364. Springer, 2000.

    Google Scholar 

  10. H. Mannila. Methods and problems in data mining. In Proc. Int. Conf. on Database Theory, Delphi, Greece, 1997.

    Google Scholar 

  11. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

    Article  Google Scholar 

  12. R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimizations of constrained associations rules. In Proc. ACM SIGMOD Int. Conf. Management of Data, pages 13–24. ACM Press, 1998.

    Google Scholar 

  13. K. A. Ross. Relations with relation names as arguments: Algebra and calculus. In Proc. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 346–353. ACM Press, 1992.

    Google Scholar 

  14. A. Stolboushkin. Finitely monotone properties. In Proc. 10th IEEE Symp. on Logic in Comp. Sci., pages 324–330, 1995.

    Google Scholar 

  15. D. Tsur, J. D. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov, and A. Rosenthal. Query flocks: a generalization of association-rule mining. In Proc. ACM SIGMOD Int. Conf. Management of Data, pages 1–12, 1998.

    Google Scholar 

  16. J. Wijsen, R. Ng, and T. Calders. Discovering roll-up dependencies. In Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, pages 213–222, San Diego, CA, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Calders, T., Wijsen, J. (2002). On Monotone Data Mining Languages. In: Ghelli, G., Grahne, G. (eds) Database Programming Languages. DBPL 2001. Lecture Notes in Computer Science, vol 2397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46093-4_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-46093-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44080-2

  • Online ISBN: 978-3-540-46093-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics