
Fly – A Modifiable Hardware Compiler

C.H. Ho1, P.H.W. Leong1, K.H. Tsoi1, R. Ludewig2, P. Zipf2, A.G. Ortiz2, and
M. Glesner2

1 Department of Computer Science and Engineering
The Chinese University of Hong Kong, Shatin NT HK.

{chho2,phwl,khtsoi}@cse.cuhk.edu.hk
2 Institute of Microelectronic Systems

Darmstadt University of Technology, Germany.
{ludewig,zipf,agarcia,glesner}@mes.tu-darmstadt.de

Abstract. In this paper we present the “fly” hardware compiler for
rapid system prototyping research. Fly takes a C-like program as input
and produces a synthesizable VHDL description of a one-hot state ma-
chine and the associated data path elements as output. Furthermore, it
is tightly integrated with the hardware design environment and imple-
mentation platform, and is able to hide issues associated with these tools
from the user. Unlike previous tools, fly encourages modification of the
compiler for research in rapid system prototyping and code generation,
and the full source code to the compiler is presented in the paper. Case
studies involving the implementation of an FPGA based greatest com-
mon divisor (GCD) coprocessor as well as the extension of the basic fly
compiler to solve a differential equation using floating point arithmetic
are presented.

1 Introduction

With the rapid advancements in FPGA technology and the constant need to im-
prove designer productivity, increasingly higher levels of abstraction are desired.
We have found that using a RTL based design methodology results in low pro-
ductivity compared, for example, with software development in C. It is believed
that this is due to the following issues:

– Hardware designs are parallel in nature while most of the people think in
von-Neumann patterns.

– The standard technique of decomposing a hardware design into datapath
and control adds complexity to the task.

– Designers must develop a hardware interface for the FPGA board as well as
a software/hardware interface between a host system and the FPGA.

The above issues serve to significantly increase the design complexity, with an
associated increase in design time and debugging. Furthermore, the time spent
in the above process restricts the amount of time which can be spent on dealing
with higher level issues such as evaluating different algorithms and architectures
for the system.

M. Glesner, P. Zipf, and M. Renovell (Eds.): FPL 2002, LNCS 2438, pp. 381–390, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

382 C.H. Ho et al.

Hardware description languages (HDL) have been proposed to address some
of the issues above, notable examples being VHDL, SystemC, Handel-C [1],
Pebble [2] and Lola [3]. For asynchronous circuits, Brunvand [4] has detailed a
similar methodology. All of the HDLs above allow the user to describe a circuit
using a behavioural model. Tools are used to translate from this higher level of
abstraction into either a netlist or a register transfer language (RTL) code in a
HDL such as VHDL or Verilog. With the exception of Lola which is written in
Oberon, a programming language which is not in widespread usage, none of the
above are available in source code form.

In order to facilitate research in high level synthesis and backend code gen-
eration, a compiler for the translation of a new language called fly, a small
subset of Perl, was developed. The full source code to the compiler is included
in Appendix A of this paper. Key differences between our approach and that of
previous work are that:

– Fly’s implementation has an open source license and can be easily under-
stood, and modified by other users. We hope that other researchers will use
this tool for research in high level synthesis, language design and circuit
generation architectures and techniques.

– Fly supports a simple memory mapped interface between a host processor
and the FPGA, serving to hide the details of the host interface from the
designer.

The rest of the paper is organized as follows, in Section 2, the fly program-
ming language, its implementation and development environment is presented.
In Section 3, the application of fly in developing a greatest common divisor co-
processor is described. In Section 4, the extension of fly to operate on floating
point numbers, and the application of this new system to the solution of differ-
ential equations is given. A discussion and conclusions are given in Sections 5
and 6.

2 The Fly Programming Language

The syntax of the fly programming language is modelled on Perl and C, with
extensions for parallel statements and the host/FPGA interface. The language is
minimal in nature and supports while loops, if-else branches, integer arithmetic,
parallel statements and register assignment. Table 1 shows the main elements of
the fly language with simple examples. The formal grammar definition can be
found in the parser (see Appendix A).

2.1 Compilation Technique

Programs in the fly language are automatically mapped to hardware using the
technique described by Page [1, 3]. In order to facilitate the support of control
structures, Page’s technique assigns a start and end signal to each statement
which specifies when its execution begins and ends. By connecting the start

Fly – A Modifiable Hardware Compiler 383

Construct Elements Example

assignment var = expr; var1 = tempvar;

parallel statement [{ . . . } { . . . } . . .] [{a = b;} { b = a ∗ c;}]

expression val op expr; a = b ∗ c;
valid ops: ∗,/,+,−

loop while (condition) { . . . } while (x < y) {
a = a + b; y = y + 1;}

if-else if (condition) { . . . } else { . . . } if (i <= j) { a = b;}
else {a = c;}

if (condition) { . . . } if (i > j) {i = i + 1;}
condition expr rel expr i >= c

valid rels: >,<,<=,>=,==,! =

Table 1. Main elements of the fly language.

and end signals of adjacent statements together, a one-hot state machine is
constructed that serves as the control flow of the hardware.

The fly compiler generates synthesizable VHDL code instead of a netlist,
simplifying code generation and making the output portable to many different
FPGA and ASIC design tools. Furthermore, using VHDL as an intermediate
language enables the logic optimization of the synthesis tool to be included in
the design flow.

2.2 Implementation Details

Fly is written in the Perl programming language [5]. Perl is a language with
very good portability, string handling facilities and libraries. We feel that the
fly system’s source code is made simpler and concise as a result of using Perl.
Development of the fly compiler was also facilitated using a parser generator
called Parse::RecDescent [6] which generates a Perl based recursive descent
parser from a description of the grammar of the target language.

2.3 Host Interface

Although the interface is easily adaptable to any reconfigurable computing card,
the fly system currently only supports the Pilchard reconfigurable computing
platform [7]. Pilchard uses a DIMM memory bus interface instead of a con-
ventional PCI bus. The advantage of the memory bus is that it achieves much
improved latency and bandwidth over the standard PCI bus.

The translated output of a fly program is interfaced with a generic Pilchard
core written in VHDL. A shell script includes all of the required libraries and
invokes all of the programs required to compile the VHDL representation of
the user’s program to a bitstream. The bitstream is then downloaded to the
FPGA and the host interface program invoked. By automating the process of
synthesis, implementation and downloading using shell scripts, the specifics of
the compilation and execution process are hidden from the user.

384 C.H. Ho et al.

Registers are used to transfer data between the FPGA and host. In normal
operation, the host processor would initialize values in $din[1] to $din[x], and
then start execution of the FPGA based coprocessor by performing a write cycle
to the $din[0] register. The write cycle causes the start signal of the first state-
ment in the FPGA to be asserted. The software then polls the least significant
bit of $din[0] which is connected to the end signal of the last statement. When
execution on the FPGA finishes, the least significant bit of $din[0] is set and the
program can read values returned by the hardware by reading the appropriate
registers.

3 A GCD Processor

The fly program for a greatest common divisor (GCD) coprocessor is given below:

{

$s = $din[1]; $l = $din[2];

while ($s != $l) {

$a = $l - $s;

if ($a > 0) {

$l = $a;

}

else {

[{$s = $l;} {$l = $s;}]

}

}

$dout[1] = $l;

}

The GCD coprocessor design was synthesized for a Xilinx XCV300E-8 and
the design tools reported a maximum frequency of 126 MHz. The design, includ-
ing interfacing circuitry, occupied 135 out of 3,072 slices.

The following perl subroutine tests the GCD coprocessor using randomly
generated 15-bit inputs.

for (my $i = 0; $i < $cnt ; $i++) {

$a = rand(0x7fff) & 0x7fff;

$b = rand(0x7fff) & 0x7fff;

&pilchard_write64(0, $a, 1); # write a

&pilchard_write64(0, $b, 2); # write b

&pilchard_write64(0, 0, 0); # start coprocessor

do {

&pilchard_read64($data_hi, $data_lo, 0);

} while ($data_lo == 0); # poll for finish

&pilchard_read64($data_hi, $data_lo, 1);

print ("gcd $a, $b = $data_lo\n");

}

Fly – A Modifiable Hardware Compiler 385

The GCD coprocessor was successfully tested at 100 MHz by calling the
FPGA-based GCD implementation with random numbers and checking the re-
sult against a software version. For randomized input test program above, the
resulting system had an average execution time of 1.63µs per GCD iteration,
which includes all interfacing overheads but excludes random number genera-
tion, checking and Perl looping overheads (Perl overheads were avoided by using
inlined C in critical sections).

4 Floating Point Extension

As an example of how the fly system can be extended, floating point operators
were added. Firstly, a parameterised module library which implemented float-
ing point adders and multipliers, similar to that of Jaenicke and Luk[8] was
developed [9]. In the library, numbers are represented in IEEE 754 format with
arbitrary sized mantissa and exponent [10]. Rounding modes and denormalized
numbers were not supported. The performance of the library is summarized in
Table 2. The adder is not yet fully optimized and the maximum frequency was
58 MHz.

Table 2. Area and speed of the floating point library (a Virtex XCV1000E-6
device was used). One sign bit and an 8-bit exponent was used in all cases.

Fraction Size Circuit Size Frequency Latency
(bits) (slices) (MHz) (cycles)

Multiplication

7 178 103 8

15 375 102 8

23 598 100 8

31 694 100 8

Addition

7 120 58 4

15 225 46 4

23 336 41 4

31 455 40 4

The following modifications were then made to the floating point module
library and fly in order to utilize this library:

– start and end signals were added to the floating point operators.
– A dual-ported block RAM interface to the host processor via read host()
and write host() was added. This interface works in a manner analogous
to the register based host interface described in Section 2.3 and allows data
between the host and FPGA to be buffered.

386 C.H. Ho et al.

– Three new floating point operators “.+”, “.-” and “.*” were added to the
parser to invoke floating point addition, subtraction and multiplication re-
spectively.

– The parser was changed to enforce operator precedence and to instantiate
the floating point operators appropriately.

4.1 Application to Solving Differential Equations

The modified fly compiler was used to solve the ordinary differential equation
dy
dt = (t−y)

2 over t ∈ [0, 3] with y(0) = 1 [11]. The Euler method was used so the
evolution of y is computed by yk+1 = yk + h (tk−yk)

2 and tk+1 = tk + h where h
is the step size.

The following fly program implements the scheme, where h is a parameter
sent by the host:

{
$h = &read_host(1);
[

{$t = 0.0;} {$y = 1.0;} {$dy = 0.0;}
{$onehalf = 0.5;} {$index = 0;}

]
while ($t < 3.0) {

[{$t1 = $h .* $onehalf;} {$t2 = $t .- $y;}]
[{$dy = $t1 .* $t2;} {$t = $t .+ $h;}]
[
{$y = $y .+ $dy;}
{$index = $index + 1;}

]

$void = &write_host($y, $index);
}

}

In each iteration of the program, the evolution of y is written to the block
RAM via a write host() function call and a floating point format with 1 sign
bit, 8-bit exponent and 23-bit fraction was used throughout. The floating point
format can, of course, be easily changed. Parallel statements in the main loop
achieve a 1.43 speedup over a straightforward serial description.

The differential equation solver was synthesized for a Xilinx XCV300E-8
and the design tools reported a maximum frequency of 53.9 MHz. The design,
including interfacing circuitry, occupied 2,439 out of 3,072 slices. The outputs
shown in Table 4.1 were obtained from the hardware implementation at 50 MHz
using different h values. The resulting system (h = 1

16) took 28.7µs for an
execution including all interfacing overheads.

Fly – A Modifiable Hardware Compiler 387

tk h = 1 h = 1
2

h = 1
4

h = 1
8

h = 1
16

y(tk) Exact

0 1.0 1.0 1.0 1.0 1.0 1.0
0.125 0.9375 0.940430 0.943239
0.25 0.875 0.886719 0.892215 0.897491
0.375 0.846924 0.854657 0.862087
0.50 0.75 0.796875 0.817429 0.827100 0.836402
0.75 0.759766 0.786802 0.799566 0.811868
1.00 0.5 0.6875 0.758545 0.790158 0.805131 0.819592
1.5 0.765625 0.846386 0.882855 0.900240 0.917100
2.00 0.75 0.949219 1.030827 1.068222 1.086166 1.103638
2.50 1.211914 1.289227 1.325176 1.342538 1.359514
3.00 1.375 1.533936 1.604252 1.637429 1.653556 1.669390

Table 3. Results generated by the differential equation solver for different values
of h.

5 Discussion

There are certain limitations associated with the compilation method used in
this paper. The compiler produces only one-hot state machines which may be
inefficient in certain cases. In addition, the language only supports simple con-
structs and may be awkward for describing certain types of parallel programs.
Finally, unless the designer fully understands the translation process and can
explicitly describe the parallelism, the resulting hardware is mostly sequential
in nature and would not be very efficient. Despite these limitations, we feel that
the benefits in productivity and flexibility that are gained from this approach
would outweigh the cons for many applications.

The compiler in Appendix A generates a fixed point bit parallel implemen-
tation, and it was shown how this could be extended to a floating point imple-
mentation. If, for example, a digit serial operator library were available, it could
be easily modified to use digit serial arithmetic. Similarly, both fixed point and
floating point implementations of the same algorithm could be generated from
the same fly description. In the future, we will experiment with more code gen-
eration strategies. Many designs could be developed from the same program,
and different fly based code generators could serve to decouple the algorithmic
descriptions from the back-end implementation. In the case of using a digit serial
library, users could select the digit size, or produce a number of implementations
and choose the one which best meets their area/time requirements.

It is also possible to modify the compiler to produce code for different HDLs,
program proving tools, and programming languages. Having an easily under-
standable and easily modifiable compiler allows the easy integration of the fly
language to many other tools.

388 C.H. Ho et al.

6 Conclusions

In this paper, the Perl programming language was used to develop a powerful
yet simple hardware compiler for FPGA design. Unlike previous compilers, fly
was designed to be easily modifiable to facilitate research in hardware languages
and code generation. Since fly is tighly integrated with the hardware design
tools and implementation platform, designers can operate with a higher level of
abstraction than they might be accustomed to if they used VHDL. Examples
involving a GCD coprocessor and the solution of differential equations in floating
point were given.

Acknowledgements

The work described in this paper was supported by a direct grant from the
Chinese University of Hong Kong (Project code 2050240), the German Academic
Exchange Service DAAD (Projekt-Nr.: D/0008347) and the Research Grants
Council of Hong Kong Joint Research Scheme (Project no. G HK010/00).

References

[1] Page, I.: Constructing hardware-software systems from a single description. Jour-
nal of VLSI Signal Processing 12 (1996) 87–107

[2] Luk, W., McKeever, S.: Pebble: a language for parametrised and reconfigurable
hardware design. In: Field-Programmable Logic and Applications. Volume LNCS
1482., Springer (1998) 9–18

[3] Wirth, N.: Hardware compilation: Translating programs into circuits. IEEE
Computer 31 (1998) 25–31

[4] Brunvand, E.: Translating Concurrent Communicating Programs into Asyn-
chronous Circuits. Carnegie Mellon University, Ph.D thesis
(http://www.cs.utah.edu/∼elb/diss.html) (1991)

[5] Wall, L., Christianson, T., Orwant, J.: Programming Perl. 3rd edn. O’Reilly
(2000)

[6] Conway, D.: Parse::RecDescent Perl module. In:
http://www.cpan.org/modules/by-module/Parse/DCONWAY/Parse-
RecDescent-1.80.tar.gz. (2001)

[7] Leong, P., Leong, M., Cheung, O., Tung, T., Kwok, C., Wong, M., Lee, K.:
Pilchard - a reconfigurable computing platform with memory slot interface. In:
Proceedings of the IEEE Symposium on FCCM. (2001)

[8] Jaenicke, A., Luk, W.: Parameterised floating-point arithmetic on FPGAs. In:
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing. (2001) 897–900

[9] Ho, C., Leong, M., Leong, P., Becker, J., Glesner, M.: Rapid prototyping of fpga
based floating point dsp systems. In: Proceedings of the 13th IEEE Workshop on
Rapid System Prototyping (to appear). (2002)

[10] Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-
proach 2nd Edition. Morgan Kaufmann (1999)

[11] Mathews, J., Fink, K.: Numerical Methods Using MATLAB. 3rd edn. Prentice
Hall (1999)

Fly – A Modifiable Hardware Compiler 389

A Fly Source Code

In this appendix, the entire source code for the
fly system used to compile the GCD coprocessor
is given. Updates to this program and the mod-
ified fly compiler which supports floating point
operations are available from:
http://www.cse.cuhk.edu.hk/∼phwl/fly/fly.html.

package main;
use Parse::RecDescent;

my $grammar = q {
{ my ($seq, $comb, $aux, $paux, $s, %sigs) =

("", "", 0, 0, "signal"); }

prog: stmtlist /^$/ {
print "library ieee;\n";
print "use ieee.std_logic_1164.all;\n";
print "use ieee.std_logic_arith.all;\n\n";
print "package hc_pack is \n";
print " subtype word is integer;\n";
print " type words is array(integer ";
print "range <>) of word;\nend hc_pack;\n\n";
print "library ieee;\n";
print "use ieee.std_logic_1164.all;\n";
print "use ieee.std_logic_arith.all;\n";
print "use work.hc_pack.all;\n\n";

print "--type words is array (integer range <>) ";
print "of word;\nentity arith_core is\nport(\n";
print "\tclk: in std_logic;\n";
print "\trst: in std_logic;\n";
print "\tstart: in std_logic;\n";
print "\tdin : in words($sigs{din} ";
print "downto 1);\n\tfinish: out std_logic;\n";
print "\tdout: out words($sigs{dout} ";
print "downto 1));\nend arith_core;\n";
print "architecture rtl of arith_core is\n";

foreach my $k (keys %sigs) {
if ($sigs{$k}) {
print "$s $k :\t words($sigs{$k} " .

"downto 0);\n"
if !($k eq "din")

and !($k eq "dout") ;
}
else {
print "$s $k :\t word; \n";

}
}
for (my $i=1; $i<$aux; $i++) {

print "$s s$i, f$i :\t boolean; ";
print "--std_logic;\n";

};
for (my $i=1; $i<=$paux; $i++) {

print "$s p$i, q$i :\t boolean; ";
print "--std_logic;\n";

};

print "$s s$item[1], f$item[1] :\t boolean; ";
print "--std_logic;\nbegin --architecture\n";
print " s$item[1] <= TRUE when start=’1’ ";
print "else FALSE ;--start;\n finish <= ’1’ ";
print "when f$item[1] else ’0’; --f$item[1];\n";
print "process(clk)\nbegin\n";
print "if rising_edge(clk) then\n";

print $seq;
print "end if;\nend process;\n";
print "--combinational part\n$comb";
print "end rtl;\n";

}

stmtlist: stmt | ’{’ stmt(s) ’}’ {
my $fst_in = shift(@{$item[2]});
my $int_in = $fst_in;
$aux += 1 ;
$comb .= "s$int_in <= s$aux; \n";
foreach $int_in (@{$item[2]}) {

$comb .= "s$int_in <= f$fst_in;\n";
$fst_in = $int_in;

}
$comb .= "f$aux <= f$fst_in;\n";
$aux;

}

stmt: asgn | ifelse | if | while |
pstmtlist | <error>

pstmtlist: ’[’ stmtlist(s) ’]’ {
$aux += 1;
my $int_in;
my @plist = ();
foreach $int_in (@{$item[2]}) {

$comb .=sprintf("s%d<=s%d;--pstmtlist\n",
$int_in, $aux);

$paux += 1;
push (@plist, $paux);

$seq .= "if f$aux then --pstmtlist\n\t";
$seq .= "q$paux <= false;\n";
$seq .= "else\n\t";
$seq .= "q$paux <= p$paux; \n";
$seq .= "end if; \n";

$comb .= "p$paux <= f$int_in or q$paux;";
$comb .= " --pstmtlist\n";

}
my $pend ="f$aux <= p".join("and p",@plist)

. "; --pstmt end\n";
$comb .= $pend;
$aux;

}

asgn: var ’=’ expr ’;’ {
$aux = $aux + 1;
$seq .= "if s$aux then\n\t";
$seq .= "$item[1] <= $item[3];\n";
$seq .= "end if;\n";
$seq .= "f$aux <= s$aux;\n\n";
$aux;

}

expr: val op expr{"$item[1]$item[2]$item[3]"}
| val

op: ’*’ | ’/’ | ’+’ | ’-’

val: /\d+/ | var

var: /\$[a-z][\w\[\]]*/ {
$item[1] =~ s/^\$//;
my $sig = $item[1];
$sig =~ s/\[(\d+)\]//;
$sigs{"$sig"} = ($sigs{"$sig"} &&

390 C.H. Ho et al.

($sigs{"$sig"} > $1)) ? $sigs{"$sig"} : $1;
$item[1] =~ tr/\[\]/\(\)/;
$item[1];

}

while: ’while’ ’(’ cond ’)’ stmtlist {
$aux += 1;
$comb .= "s$item[5] <= ($item[3]) and " .

"(s$aux or f$item[5]);\n";
$comb .= "f$aux <= (not ($item[3])) and " .

"(s$aux or f$item[5]);\n";
$aux;

}

ifelse: ’if’ ’(’ cond ’)’ stmtlist ’else’ stmtlist {
$aux += 1;
$comb .= "s$item[5] <= ($item[3]) and s$aux;\n";
$comb .= "s$item[7] <= (not ($item[3])) and s$aux;\n";
$comb .= "f$aux <= f$item[5] or f$item[7];\n";
$aux;

}

if: ’if’ ’(’ cond ’)’ stmtlist {
$aux += 1;
$comb .= "s$item[5] <= ($item[3]) and s$aux;\n";
$comb .= "f$aux <= (not ($item[3]) and s$aux) or f$item[5];\n";
$aux;

}

cond: expr rel expr { "$item[1] $item[2] $item[3]" }

rel: ’>’ | ’<’ | ’<=’ | ’>=’ | ’!=’ { "/=" } | ’==’ { "=" }

varlist: var ’,’ varlist { "$item[1] $item[3]" } | var
};

$::RD_HINT = 0;
$::RD_AUTOACTION = q { $item[1] };
my $parser = Parse::RecDescent->new($grammar)

or die "Bad grammar";

local $/;
my $script = <>;
my $tree = $parser->prog($script) or die "Bad script";

	Introduction
	The Fly Programming Language
	Compilation Technique
	Implementation Details
	Host Interface

	A GCD Processor
	Floating Point Extension
	Application to Solving Differential Equations

	Discussion
	Conclusions
	Fly Source Code

