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Indexical-based Solver Learning

Thi Bich Hanh Dao, Arnaud Lallouet, Andrei Legtchenko, Lionel Martin

Université d’Orléans — LIFO
BP 6759 — F-45067 Orléans cedex 2

Abstract. The pioneering works of Apt and Monfroy, and Abdennadher
and Rigotti have shown that the construction of rule-based solvers can
be automated using machine learning techniques. Both works implement
the solver as a set of CHRs. But many solvers use the more specialized
chaotic iteration of operators as operational semantics and not CHR'’s
rewriting semantics. In this paper, we first define a language-independent
framework for operator learning and then we apply it to the learning of
partial arc-consistency operators for a subset of the indexical language of
Gnu-Prolog and show the effectiveness of our approach by two implemen-
tations. On tested examples, Gnu-Prolog solvers are learned from their
original constraints and powerful propagators are found for user-defined
constraints.

Keywords : CSP; consistency; learning; rule-based constraint solver.

1 Introduction

Building a constraint solver is a notoriously complex task [12,18,16] and it has
been recently demonstrated that — at least some parts of — this design can
be automated by systematic search [4] or by using machine learning techniques
[1,2]. An automatic tool to generate solvers may help the solver designer by
giving him a first implementation and letting him concentrate on non-trivial
optimization. But it is also useful to the user who may, with little experience,
develop a global constraint ad-hoc to his problem and get for free a propagator
for it. We provide in this paper a formal framework to define finite domain solver
learning and we propose a learning method which fits in this framework.

An efficient technique for computing consistencies in Constraint Satisfaction
Problems (CSPs) is to use a data representation for the CSP and a set of opera-
tors whose common fixed-point models the expected consistency. The operators
are then applied via chaotic iteration [13,3] until reaching their common fixed-
point. But solvers differ in the way they represent these operators: they can
be written in the implementation language [18,16] or in a higher-level language
such as indexicals [21]. An indexical operator is written “X in r” where X is
the name of a variable, and r is an expression which limits the range of possible
values for X and which may depend on other variables’ current domains.

For example, the constraint and(X,Y,Z), defined by the following table,
yields three indexical operators, one for each variable:



Gnu-Prolog indexicals:

X in min(Z) .. max(Z)*max(Y)+1-min(Y)
Y in min(Z) .. max(Z)*max(X)+1-min(X)
Z in min(X)*min(Y) .. max(X)*max(Y)

and :

X
0
0
1
1

=l E=]a
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It is obvious that the expression for Z depending on X and Y is simple and
intuitive whereas the expression for X depending on Y and Z is not. Building
manually such expressions for arbitrary constraints is undoubtedly a challenge.

In this paper, we propose a framework to define the learning of such operators
in three steps. We consider that a CSP is a set of n-ary constraints.

1. We define a notion of semantic approzimation of a CSP, which consists in
replacing the original problem by an approximate one, from the point of
view of the data-structure and the solutions. For a CSP C' composed of sev-
eral n-ary constraints, its approximation K uses different, usually simpler
constraints (for example, the domain of each variable), and the notion of
solution is replaced by the weaker one of consistency. Operators are intro-
duced to transform these CSPs and their closure defines a consistent state.
A similar though more general framework is the one of [7] for semiring-based

CSPs.

2. We define a notion of syntactic approximation. The choice of a representation
language, both for the data and the operators, is of crucial importance since
the language may not allow to represent all possible data or operators. This
defines a second level of approximation but also a concrete representation.
For example, intervals are a data representation for variable domains and
indexicals for operators.

3. It is then possible to define a learning space of all possible operators and
check the fitness of each candidate operator towards the definition of the
constraint. Operator learning consists in an exploration of this learning space
to look for the best candidate.

We propose a learning technique and two implementations of indexical op-
erator learning specialized to the context of the partial arc-consistency of Gnu-
Prolog [11] which consists in contracting the bounds of the variables domain,
represented as intervals. The learned operator can be intuitively thought as the
summary of the best possible reductions done by the constraint on every possible
interval which could be encountered during the solving process.

The paper is organized as follows. In section 2, preliminaries on CSP solving
are given. In section 3, we present our approximation framework, from which
the learning problem is derived. In section 4, we specialize our framework for
the learning of indexicals for partial arc-consistency and we present the language
biases we used. Section 5 is devoted to the implementations and section 6 gives
an illustration with some examples.



2 Preliminaries

Let V be a set of variables and D = (Dx)xey their domains. The domains we
consider are finite and totally ordered sets. For W C V, we denote by D" the set
of tuples on W, namely ITxcw Dx. Therefore, we have DV = ITD. Projection
of a tuple or a set of tuples on a set of variables is denoted by |, natural join of
two sets of tuples is denoted by x.

Definition 1 (Constraint). A constraint ¢ is a pair (W,T) where

— W CV is the arity of the constraint ¢ and is denotled by var(c).
— T C DY s the solution of ¢ and is denoted by sol(c).

Definition 2 (Approximation ordering). A constraint ¢ = (W', T") ap-
proximates ¢ = (W, T), denoted by ¢ C ¢, if var(c') = var(c) and sol(c) C
sol(c).

The join of two constraints is defined as a natural extension of the join of tuples:
the join of ¢ and ¢ is the constraint ¢ X ¢ = (var(c) Uvar(c'), sol(c) x sol(c')).

Definition 3 (CSP). A CSP is a set of constraints.

Join is naturally extended to CSPs and a CSP C is identified to be the join of its
constraints X C'. This defines the solutions of the CSP. A direct computation of
this join is too expensive to be tractable. This is why various methods have been
considered so far to compute the solutions of a CSP. We present here a short
description of some of them for a comparison with other works (the presentation
order is not significant):

— search methods: basically, it amounts to try values for the variables and test
the constraints for satisfiability. Almost all other methods are hybridized
with search to get completeness.

— symbolic transformations: by this, we refer to a variety of syntactic transfor-
mations of the constraints in order to obtain a solved form, for example in
the CLP(R) [15] system. A further level of abstraction comes with the CHR
language [14] which allows to describe rewriting-based solvers in a simple
and versatile way. For example, here is a possible rule in the CHR language
to simplify a boolean store:

and(X,Y,Z) A Z=1 <= X=1 A Y=1 A Z=1
In our vision, the main characteristics of this language is that it uses first-
order variables, or in other terms, that a variable represents an element of
the domain.

— approximations: to be solved, constraints are represented not only by their
syntactic form but also extensionally by their solutions. A state is an over-
approximating CSP and transitions from a CSP to a smaller one are repre-
sented by correct, monotonic and contracting operators which are iterated
until reaching a property called consistency. The contracting operators are
most of the time written in the solver’s implementation language (C++ for



Tlog Solver [18], Claire for The Choco System [16], ...) and this is probably
the reason why this formalism is often perceived as only implementation-
relevant.
There is however an exception with the “indexicals” language introduced in
[21] and used in the Gnu-Prolog system [9, 11] or in the Sicstus Prolog system
[8]. In this framework, variables are second-order and designate constraints
instead of domain elements. It allows the description of operators of the
form “X in r” where X represents the domain of the variable, “in” is the
set inclusion and r is an expression of some set language. We believe that
this paradigm is more general than it seems since it is parametrized by the
language of r. This paradigm deserves further research since there is still
no formalism having the same generality and expressive power to define
indexical operators as the CHR, formalism for the symbolic transformation
point of view. A step towards this goal may be the so-called delay clauses
of B-Prolog [23]. Indeed, the choice of the “r” language is of particular
importance in a learning perspective.

— other methods: various other methods have been tackled to solve CSPs (see
for example [20]).

3 A model of approximation for CSPs

In this section, we present a high-level model for the approximation made by
consistency adapted from the more general framework of [7]. This set-theoretic
formulation allows to describe very precisely the approximation process in a
language-independent way. The basic idea is to clearly separate the CSP to
be solved from its approximation (and more generally from the sequence of
approximating CSPs).

3.1 Semantic approximations

Let C' be a CSP over a set of variables V. Since a CSP is somehow identified
with its join constraint X C, it can be approximated by a CSP K over the same
set of variables V' and such that X C' C XK. In this case and by extension, we
write C' C K.

Intuitively, the CSP K is intended to be physically represented, for example
(but not exclusively) by sets of tuples. This is why C' and K may be built on
completely different constraints. When all constraints in K are unary, and thus
represent the domain of variables, it yields to the well-known “domain reduction
scheme” used in most solvers. We call K the approzimating CSP. Here is an
example of two different approximating CSPs:

Ezample 4. Let C be the CSP composed of one constraint: ¢ = ({X,Y, Z},
{(0,0,0), (0,0,1),(0,1,0),(1,0,1)}). Here are two approximating CSPs K; =
{z,y,2} and Ky = {z,yz} which are represented in figure 1. Here z = ({X},
{(0), (1)}) is an unary constraint representing the domain of X and yz = ({Y, Z},
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Fig. 1. Two different approximations for a CSP

{(0,0), (0,1), (1,0)}) is an arbitrary binary constraint. The constraints y and z
are defined in the same straightforward way.

Most of the time, switching from C to K provides a gain in terms of memory
consumption. For example, in the domain reduction approximation for n vari-
ables and a domain of size m, it boils down from m™ to m % n. But the trade-off
is that representable approximations are less precise since they are limited to
(the union of) cartesian products.

In the rest of the paper, C' denotes the CSP to be solved, and K its approx-
imating CSP. Moreover, we only use the domain reduction scheme. This means
that the approximating CSP K is always composed of one unary constraint z
for each variable X € var(C) (a lowercase letter designates the constraint while
an uppercase designates the variable). Since our goal is to find the best approxi-
mation (in some sense), we call an approximating CSP K a search state and the
set of such states is the search space S = IIxcyP(Dx). For W C V, we denote
by Sw = IIxcwP(Dx) the search space restricted to W, hence S = Sy. We
just indicate that this framework can be extended to approximations made with
constraints of arbitrary arity but domain approximations help to keep simplicity
to the notations.

3.2 Consistencies

In order to reach a certain degree of precision, approximations have to be refined:
a sequence of over-approximating CSPs (K;);en such that Vi > 0, K; D K,y is
built, until reaching a closure called consistency. Transitions between states are
computed by operators. The nature of the operators determines the consistency
and they are supposed to be correct, monotonic and contractant [3].

Ezample 5 (Projection operator). Let ¢ = (W,T) and X € W. The pro-
jection cx : Sw_yxy — P(Dx) is defined by cx(s) = {tx € Dx |t €
T and t|w_;x}y € s}. Suitably extended to S in order to be an operator, it
is used for arc-consistency.



A set of operators is associated to the CSP and is iterated until reaching their
common closure. This is often done by chaotic iteration [13, 3]. We are concerned
in this paper with the learning of such operators in the particular case of partial
arc-consistency used for example in Gnu-Prolog. Variable domains are repre-
sented only as intervals and thus only their bounds are contracted. Usually, to
each constraint is associated an operator for each variable it contains. Let R be
the set of reduction operators for a CSP C'. We write R | K the closure of K by
the operators of R, i.e., the greatest CSP K’ C K such that Vr € R, K’ = r(K').
A search state K is R-consistent if K = R | K.

3.3 Correctness and Completeness

Correctness for an operator r means that no solution is lost, or in other terms,
that C C K = C C r(K). This is a strongly needed property since an incorrect
solver may discard a solution forever. Completeness, however, is not a required
property at the operator’s level since this is achieved by the search mechanism.

But often solvers require the operators to be singleton complete, i.e., complete
only for singletons. Let us define this notion:

Definition 6 (Singletonic CSP).
An approzimating CSP K is singletonic if Vk € K, |sol(k)| = 1.

Intuitively, a singletonic CSP K on the set of variables V' represents a tuple of
DV, a potential solution of the CSP C.

Definition 7 (Singleton Completeness).
Let C be a CSP and R its associated set of operators. The set R is singleton
complete if for any singletonic CSP K, we have

KgZC=|sol(R|K)=0

This means that a non-solution tuple must be rejected by (at least) one operator.
On the other side, correctness for singletonic CSPs means that a tuple is solution
if accepted by all operators.

Singleton completeness is the basis of the compilation scheme of Gnu-Prolog
since the (high-level) constraints such as X =Y + Z are replaced by an “equiv-
alent” formulation in the indexical language. However, the compilation can be
effective only if the operators are able to distinguish between a solution and
a non-solution, at least at the tuple level. Operationally, it means that, when
dealing with a candidate solution, the consistency check can be realized by the
propagation mechanism itself. But an important remark is that singleton com-
pleteness is a global property and is thus highly complex to check for an arbitrary
set of operators because two non-solution tuples may be rejected by two differ-
ent operators. In contrast, correctness check for an operator remains a local
verification which only involves this operator.



3.4 Syntactic approximations: intervals and indexicals

The above formalism is language-independent but we still need to represent
the domains and operators since learning is impossible without a representation.
First, intervals are chosen for domain representation for their low space cost. This
notion of approximation, different than consistency, comes from interval analysis
and is presented for example in [3] where it is based on a family of subsets. This is
an approximation of the domain while the consistency defines an approximation
of the solutions. It defines the representable subsets of a variable’s domain.

The indexical language introduced in [21] and used in Gnu-Prolog [11] and
Sicstus Prolog [8] is a convenient language to define operators. An operator is
expressed by a second-order constraint x C r where z is a constraint of the
approximating CSP K and r a constraint expression in a given language. Since
we consider that all constraints in K are unary, the evaluation of r is a “range”,
i.e., another monadic constraint.

Example 8. For example, the high-level constraint X #= Y+C is compiled for par-
tial arc-consistency by Gnu-Prolog into two indexical operators:
X in min(Y)+C .. max(Y)+C and Y in min(X)-C .. max(X)-C
For full arc-consistency, the same constraint is compiled to:
X in dom(Y)+C and Y in dom(X)-C

A subset of the Gnu-Prolog indexical language is given in figure 2.

c == Xinr

r o= t1 .. t2 (interval)
{t} (singleton)
r1 : T2 (union)

T & T2 (intersection)

t == min(Y) (indexical term min)
max (Y) (indexical term maz)
ct (constant term)
ti+ta | ti—ta | bixta | t1/ <t | t1/7t2 (integer operations)

ct := n|infinity (values)

cti+cto | cti-cto | cti*cto | Ct1/<Ct2 | Ct1/>Ct2

Fig. 2. A subset of Gnu-Prolog indexical language

Yet, since the Gnu-Prolog indexical language does not contain conditional
expressions, the formulation of some operators may be operationally inefficient.
This is why Gnu-Prolog implements an ad-hoc delay mechanism by the syn-
tax val(X) which represents the same value as dom(X) but delays until X is
instanciated. It is the only guard of the language.



4 Description of the learning problem

In this section, we present the example space, the learning space and the learning
algorithm. Semantic approximations of CSPs are a vast framework and many
choices have to be made. Here we present as restrictions the main choices we
made to get a tractable learning problem.

Let ¢ = (W,T) € C be a constraint. The exact projection function cx of ¢ on
a variable X € W has been defined in example 5. Our goal is to learn a function
LS which mimics the behavior of cx and is at least correct. This means that
Vs € Syar(e)—{x} Lk (5) 2 cx(s). But we also want to be the closest possible
to the projection function since the constant function s — Dyx is correct but
useless.

Definition 9 (Example set). The function cx, or equivalently the set of
pairs Ex(c,X) = {(s,cx(8)) | s € Syar(c)—{x1} 18 called the example set for
L%.

Learning is often made from an incomplete set of examples, and a part of the
learning process consists in finding a suitable generalization. In solver learning,
a missing example may yield an incorrect behavior, which contradicts the most
crucially expected solver property.

Restriction 1 Since we want to get correct operators, we use the whole example
set in the learning process.

The size of this example set is 2¥xevar@Px| which is in general far too large to
be completely traversed. In contrast, the interval space has a size in O(ITx cyar(c)
|Dx|?). In order to shrink the search space, arbitrary subsets can be “rounded”
to their next including interval.

Restriction 2 We compute with intervals.

Nevertheless, the output of an operator could be any subset. In order to further
reduce the learning space, we set the following language bias:

Restriction 83 The output of the learned operator is a single interval.

Because of this restriction, the operator L% is expressed in the indexical language
by its minimal and maximal bounds minL$ and maz LS, which are arithmetic
expressions not involving X . Note that the power of indexicals is not fully used
but also that it is sufficient to represent the partial arc-consistency used in Gnu-
Prolog.

Now we make these restrictions more formal in order to define the example
set really used in the learning process. First, interval lattices are a particular
case of lattice approximations:

Definition 10 (Lattice approximation). Let E be a sel and P a sub-lattice
of P(E) such that ) € P and E € P. For e € P(E), we define:

upp(e) =inf{p € P | e C p}



Let Intx be the interval lattice of D x. In order to define the input of the function
to be learned, we need to define the search space in which the computation
takes place. It consists of a unique interval for each variable. For W C V', let
Intw = IlIycw Inty. The interval approximation can be extended to cartesian
products by uprnt,, : Sw — Intw defined by:

s IIyew uprnty (Sy)

We denote by [s] this interval approximation of s. Note that the approximation
domain Inty is omitted since there is no possible confusion. By computing in
the interval lattice, we preserve the correctness:

Proposition 11.
Vs € Spar(e)—x}> cx(s) C ex([s])
Proof. By monotony of cx.

Definition 12 (Approximate example set).
The approximate example set for L s given by the function

Exnt (¢, X): Intvmn(c)_{x} — Intx

such that
Ex™™ (¢, X)(s) = [ex(s)]

The bounds of L% can be learned separately from a separate example set. For
example, for min LS, the example set is given by the function Int,q()—fxy = N
defined by s — min([cx (s)]). In the following, we focus on minLS, but the other
bound is obtained by the same method.

Now, we cannot be more precise without introducing a language to express
operators. The remaining problem is to find a suitable expression in the sub-
grammar of terms and constant terms (entries ¢ and ¢t in figure 2) which mimics
as closely as possible the behavior of the function min([ex(s)]). In order to
limit the complexity of the learning process, we use the following language bias.
Since the sum is present in the language, our technique consists in fixing the
general form of the function to be learned to a linear combinaison of terms, each
one being expressed without the addition. Let £; = {min(Y),maz(Y) | Y €
W and Y ;éX}, Ly = {tl * to | ti,t2 € El} and £ = L1 U L».

Then we can express minL$ as the following linear form:

minL, = YXyer ay xw + ag

The last part of the learning algorithm consists in finding the coefficients «,,,
in order to meet the correction constraints. For each example s, the value of
minL5 (s) is correct if lesser or equal than the real value min([cx (s)]).

In contrast, completeness cannot be ensured the same way because it would
sometimes prevent the system to have a solution. Singleton completeness, which



is not a local property, cannot be expressed at this level. Our approach consists
in finding the most complete function in a certain sense, by minimizing a quality
function for each candidate. We tried different quality functions and the results
are presented in the next section. A typical quality function is to minimize the
global error between the candidate and the real value. Hence we get the following
linear program:

minimize:

ESEIntvav’(c)f{X} min([cx (3)]) - manS((S)
subject to:
Vs € Intvar(c)—{X} ) mng((s) < mZTL([CX(S)])

The correctness of the algorithm is ensured by construction.

One may wonder if the restrictions we made and the biases we used do not
yield a too much restricted framework. Here are some answers:

— The formalism of semantic approximations we use is very general and al-
lows us to test many hypotheses. Indeed, with our definition of semantic
approximation, all kinds of consistencies can be formalized in a language
independent way. However, indexicals are high-level enough to easily allow
the handling of the many syntactic transformations necessary to the learning
process.

— The results we present in section 6 show that the operators learned are of
good quality. In particular on regular constraints, we are able to find the
classical operators of Gnu-Prolog. On arbitrary constraints, we still obtain
a good pruning power.

— The choices we made present a good balance between the complexity of the
learning task and the size of the explored search space. In particular, the use
of a strong language bias is a common feature in machine learning [22].

— The complete construction of a solver may probably not be fully automatic.
But a collection of learning tools with different techniques and algorithms
may be of great help. We rather think of these tools as being part of a solver
design environment.

5 Implementations

We have built two systems implementing this framework. A first system handles
constraints of arbitrary arity, uses the simplex algorithm and yields X in r in the
form described above (a linear combinaison of elements of £). The second one
handles only binary constraints, uses a genetic algorithm, and proposes three
different (but still fixed) forms of operators.



5.1 The Simplex learner

The principle of this implementation is to solve the previous linear programming
problem with the simplex algorithm: the simplex learner is a C program which
calls the solver Ip_solve!.

The command-line user interface allows mainly to build minimal and maximal
bounds for each variable with basic simplifications and to compute reductions
obtained with these bounds.

5.2 The Genetic learner: GA-ILearner

This second implementation uses genetic algorithms to improve the quality of
a population of candidate solutions. This C++ application has a graphic in-
terface which allows the user to “draw” his constraint with the mouse. The
user constraint appears on screen as red dots (see figure 3). Only binary con-
straints are allowed in order to be representable on screen, but variable do-
mains range up to 50 x 50. The user can learn the bounds of the functions
separately, or specify them manually. Three fixed forms of functions are pro-
posed for each bound: linear (X,,;, = A *min(Y) + B x maz(Y) + C), rational
(Xmin = mmg,)ﬂ + ma:t(BY)Jrl + C) and quadratic (X, = A * min(Y)? +
B xmaz(Y)? + C xmin(Y) * maz(Y) + D * min(Y) + E * maz(Y) + F). An
example of rational approximation is given in figure 3. The singletons which are

Population size 12000
wn B i P (1-point mutation] /205
vl P P [+1 mutation) |0

‘ Raduction 1|

3 visual [X in ] ===
Function type:
Ao
" Linesr @ Rational O Guadraic
B |5
Bound
IS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEN C |32 " KMIN  XMAX © YMIN ¢ YMAX
0
AREs ﬁé w Other beund
0
el e New computation Gorsiep
1| el e F o
O080080080080068 New canstaink
TISlE e e S e
EEEREEEEE Set manua\lp‘
iOooooool
ioooo
(el
]

| ] | [ ] ]

[current bound): 31

oD |

Best solution 177 212186720703
Average solution 1133066015625

X in [Xmin. Xmax] f
Y in [Ymin_.Ymax] il

UMINEREITEDM SR EANE

XMIN = 0=10/(_min+1) + 6=10/_max+1) + 14
XMAX =119-10/(_min+1) + 1310/ max+1) + 13
YHIN = 0°10/(_min+1) + 31°10/_max+1) + 5
YMAX =010/ min+1) + 6*10/_max+1) + 33

Fig. 3. Rational approximation of a cloud

accepted by the indexicals appear on screen as grey dots. The user may then

! ftp://ftp.es.ele.tue.nl/pub/Ip_solve ©



specify a domain, which appears as a red box, and visualize the reduced domain
yield by his indexicals, which appears as a green box (in figure 3, the user box
is [0..49] x [0..49] and the reduced domain is given by the inner box). Since the
learned indexicals may not be monotonic, the reduced interval may be smaller
than the singleton solutions. Sufficient conditions for the indexicals to be mono-
tonic can be obtained with syntactic biases. However, correctness with respect
to the constraint’s solutions is ensured by construction. Singleton completeness
is difficult (and sometimes impossible) to ensure. We tried a greedy algorithm to
generate new indexicals from the non-covered examples but this does not solve
all the cases.

The construction of the indexical is left to a genetic algorithm in which indi-
viduals are a sequence of bits representing the coefficients. The quality function
is inversely proportional to the square of the error between the candidate and
the example set. We tried as definition of error the simple sum of the individual
errors on each intervals and the sum of individual errors relative to the size of
the interval. Incorrect individuals are strongly penalized. Surprisingly, these no-
tions of error, besides the complexity of their evaluation, exhibit a relatively flat
search space with very deep and narrow local minimas. This sometimes causes
a slow convergence of the population, which is usually of a few seconds.

6 Examples

We present in this section some examples of learned indexicals, illustrated by
reductions using them. The results we present in this section have been obtained
with the simplex implementation. First, we mention that the same indexicals as
Gnu-Prolog are found for ordinary boolean constraints such as And, Or or Xor.

Three-valued logic.  Variables in three-valued logic can have one of the values
1, 0 and 0.5, which stand for true, false and unknown respectively. We present
here the Ands constraint defined in figure 4. From this constraint our algorithm

Xo X1 XQ XO Xl X2 XO Xl XQ
ands - 0|00 05{01]0 110]0
3 010.5| 0 0.5(0.5(0.5 1 10.5|0.5
0|1]0 0.5| 1 (0.5 1(1]1
Fig. 4. The constraint ands.
generates the following indexicals:
X0 in [ Min(X2) .. 1.00 - Min(X1)#Min(X1) + Min(X1)x*Max(X2) ]
X1 in [ Min(X2) .. 1.00 - Min(X0)#*Min(X0) + Min(X0)*Max(X2) ]
X2 in [ Min(X0)*Min(X1) .. Max(X0) - Max(X0)*Max(X0) + Max(X0)*Max(X1) ]

The reduction with Xy =0, X; € [0,1] and X5 = 0.5 gives:



X0 in [ 0.50 .. 0.00 ], X1 in [ 0.50 .. 1.00 ], X2 in [ 0.50 .. 0.00 ]

We notice that the first and the third indexicals represent the empty interval,
which mean that all elements whose Xy = 0 and X5 = 0.5 are rejected by these
indexicals. When X, = 0.5, these indexicals imply that Xy and X; must not be
0, and when X = 1, then Xy and X; must be 1. These results are computed by
the generated indexicals.

Other examples. A more complete set of examples and experimentations can
be found in [6]. For example, we found indexical expressions for the “full adder”
constraint fulladder (X0,X1,X2,X3,X4) meaning Xo + X1 + Xo = 2% X3 + X4
or for the equivalence equiv3(X0,X1,X2) in three-valued logic among others.

An interesting point is that the propagator built by the system makes a
user-defined constraint behave as an ad-hoc global constraint. Experiments have
been made on the all-different constraint for the arity 3 and 4. The pruning
power lies between the naive implementation as differences and a specialized
implementation [19].

Integration in Gnu-Prolog. When singleton complete indexicals are found, they
can be fruitfully integrated in Gnu-Prolog, thus making a propagator for a user-
defined global constraint. The main advantage is that the learned indexicals
can replace the original indexicals generated by Gnu-Prolog in its compilation
process. Moreover, since a global constraint replaces several atomic constraints
and since Gnu-Prolog breaks long expressions into smaller ones, the result is that
less indexicals have to be scheduled, yielding an increased propagation speed.
For example, for the constraint 0 < X — Y < 4, our system generates
the two following indexicals: X in min(Y) .. max(Y)+4 and Y in min(X)-4
. max(X). In Gnu-Prolog, this constraint has to be written as two constraints
0 <X -—Y and X — Y < 4, yielding 4 indexicals. Our test consists in trying
all possible reductions for the intervals with bounds in [0..20] for both variables.
On a laptop Pentium III-m 1GHz, 256 Mb, the time of our indexicals is 35.0s
while Gnu-Prolog’s one is 36.8s. There is only a difference of two indexicals on
this example, hence we can expect better results for more complex expressions.
As a comparison, the use of Gnu-Prolog’s built-in predicate fd_relation with
the set of tuples satisfying the constraint leads to a time of 193.9s. This shows
the utility of the method in the general case.

7 Conclusion

Related work.  Solver learning is an emerging technique which was pioneered
by Apt and Monfroy in [4,5] and Abdennadher and Rigotti [1,2].

In [4] and [5], very simple rules of the form 1 = s1,...,2, = sp 2> y # a
are at first considered. They provide a notion of consistency weaker than arc-
consistency. Then these rules are extended by replacing equality by membership
to achieve arc-consistency. The learning algorithm generates every rule to check



its validity, and redundant rules are eliminated. This framework is language-
independent, but the rules have a very restrictive form.

The work of [1] extends the language issue to the far more expressive frame-
work of CHRs. The PROPMINER algorithm consists in an exploration of a user-
restricted learning space for the rule’s lefthand side and a computation of the
righthand side, leading to the choice of the best covering rules. In [2], this work
has been extended to handle prolog-like definition of constraints. This work is
based on CHR and its rewriting semantics. We propose in contrast to define
lower-lovel operators which yield in general faster solvers. CHRs subsume in-
dexicals in term of expressivity (and indexicals can be mimicked by CHRs) but
their execution mechanism is different. In addition, our learning algorithm is not
related to PROPMINER, which is mostly syntactic. Instead, it is rather closer to
the learning of arithmetic functions for which a difficulty is the lack of suitable
generalisation ordering on the hypothese space.

Other formalisms compute upper bounds at run-time, such as Generalized
Constraint Propagation [17], or Constructive Disjuction [21,10], but are not
designed to statically build a solver.

Summary. In this paper we have presented a general framework of seman-
tic approximations for finite domains CSPs. We applied this framework to the
learning of indexical operators [21,10] which are at the core of the Gnu-Prolog
system [11] and built two learning tools. The first one handles constraints of
arbitrary arity and uses the simplex algorithm as optimization tool. The second
is restricted to binary constraints but proposes a graphical user interface which
allows the user to draw his constraint and to visualize the learned expressions. It
uses internally a genetic algorithm to achieve the optimization. On regular con-
straints, such as arithmetic or boolean constraints, Gnu-Prolog indexicals are
found. On user-defined constraints, the generated operators are of good quality
in term of pruning power.
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Bergere, AbdelAli Ed-Dbali, Gérard Ferrand and Christel Vrain.
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