Skip to main content

Eureka!: A Tool for Interactive Knowledge Discovery

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2453))

Included in the following conference series:

  • 1401 Accesses

Abstract

In this paper we describe an interactive, visual knowledge discovery tool for analyzing numerical data sets. The tool combines a visual clustering method, to hypothesize meaningful structures in the data, and a classification machine learning algorithm, to validate the hypothesized structures. A two-dimensional representation of the available data allows a user to partition the search space by choosing shape or density according to criteria he deems optimal. A partition can be composed by regions populated according to some arbitrary form, not necessarily spherical. The accuracy of clustering results can be validated by using a decision tree classifier, included in the mining tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Beltrami. Sulle funzioni bilineari [on bilinear functions]. Giornale di Matematiche ad Uso degli Studenti delle Università, 11:98–106, 1873.

    Google Scholar 

  2. S. Berchtold, H.V. Jagadish, and K.A. Ross. Independence Diagrams: A Technique for Visual Data Mining. In Proceedings of Fourth Int. Conf. on Knowledge Discovery and Data Mining, 1998.

    Google Scholar 

  3. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

    Google Scholar 

  4. K.C. Cox, S.G. Eick, G.J. Wills, and R. J. Brachman. Visual Data Mining: Recognizing Telephone Calling Fraud. Data Mining and Knowledge Discovery, 1(2):225–231, 1997.

    Article  Google Scholar 

  5. R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. Wiley, New York, 1973.

    MATH  Google Scholar 

  6. U. Fayyad, G.G. Grinstein, and A. Wierse. Infomation Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann, 2002.

    Google Scholar 

  7. U.M. Fayyad, G. Piatesky-Shapiro, and P. Smith. From Data Mining to Knowledge Discovery: an overview. In U. Fayyad et al., editors, Advances in Knowledge Discovery and Data Mining, pages 1–34. AAAI/MIT Press, 1996.

    Google Scholar 

  8. G.H. Golub and C.F. Van Loan. Matrix Computation. The Johns Hopkins University Press, 1989.

    Google Scholar 

  9. M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On Clustering Validation Techniques. Journal of Intelligent Information Systems. To appear. Available at http://www.db-net.aueb.gr/mhalk/papers/validity_survey.pdf.

  10. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufman, 2000.

    Google Scholar 

  11. A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.

    Google Scholar 

  12. I.T. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

    Google Scholar 

  13. D.A. Keim and S. Eick. Proceedings Workshop on Visual Data Mining. ACM SIGKDD, 2001.

    Google Scholar 

  14. D.A. Keim and H.P. Kriegel. Visualization Techniques for Mining Large Databases: A Comparison. IEEE Transaction on Knowledge and Data Engineering, 8(6):923–938, 1996.

    Article  Google Scholar 

  15. F. Korn et al. Quantifiable Data Mining Using Principal Component Analysis. VLDB Journal, 8(3–4):254–266, 2000.

    Article  Google Scholar 

  16. F. Korn, H.V. Jagadish, and C. Faloutsos. Efficient Supporting Ad Hoc Queries in Large Datasets of Time Sequences. In Proceedings of the ACM Sigmod Conf. on Magagment of Data, 1997.

    Google Scholar 

  17. M. Macedo, D. Cook, and T.J. Brown. Visual Data Mining In Atmospheric Science Data. Data Mining and Knowledge Discovery, 4(1):68–80, 2000.

    Article  Google Scholar 

  18. G.J. MacLahan and T. Krishnan. The EM Algorithm and Extensions. Wiley, 1997.

    Google Scholar 

  19. W. H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Receips in C: The Art of Computing. Cambridge University Press, 1992.

    Google Scholar 

  20. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

    Google Scholar 

  21. G. Strang. Linear Algebra and its Applications. Academic Press, 1980.

    Google Scholar 

  22. Telcal Team. Analisi della struttura produttiva ed occupazionale della regione calabria: Risultati. Technical report, Piano Telematico Calabria, 2001. in italian.

    Google Scholar 

  23. S. Theodoridis and K. Koutroubas. Pattern Recognition. Academic Press, 1999.

    Google Scholar 

  24. I. Witten and E. Frank. Data Mining: Practical Machine Learning Tools with Java Implementation. Morgan-Kaufman, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Manco, G., Pizzuti, C., Talia, D. (2002). Eureka!: A Tool for Interactive Knowledge Discovery. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds) Database and Expert Systems Applications. DEXA 2002. Lecture Notes in Computer Science, vol 2453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46146-9_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-46146-9_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44126-7

  • Online ISBN: 978-3-540-46146-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics