Skip to main content

Efficient Data Mining Based on Formal Concept Analysis

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2453))

Included in the following conference series:

  • 1569 Accesses

Abstract

Formal Concept Analysis is an unsupervised learning technique for conceptual clustering. We introduce the notion of iceberg concept lattices and show their use in Knowledge Discovery in Databases (KDD). Iceberg lattices are designed for analyzing very large databases. In particular they serve as a condensed representation of frequent patterns as known from association rule mining.

In order to show the interplay between Formal Concept Analysis and association rule mining, we discuss the algorithm Titanic. We show that iceberg concept lattices are a starting point for computing condensed sets of association rules without loss of information, and are a visualization method for the resulting rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Agrawal, T. Imielinski, A. Swami. Mining association rules between sets of items in large databases. Proc. SIGMOD Conf., 1993, 207–216

    Google Scholar 

  2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. Proc. VLDB Conf., 1994, 478–499 (Expanded version in IBM Report RJ9839)

    Google Scholar 

  3. R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. of the 11th Int’l Conf. on Data Engineering (ICDE), pages 3–14, Mar. 1995.

    Google Scholar 

  4. A. Arnauld, P. Nicole: La logique ou l’art de penser-contenant, outre les règles communes, plusieurs observations nouvelles, propres à former le jugement. Ch. Saveux, Paris 1668

    Google Scholar 

  5. Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, L. Lakhal: Mining Minimal Non-Redundant Association Rules Using Frequent Closed Itemsets. In: J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, P. J. Stuckey (eds.): Computational Logic-CL. Proc. 1st Intl. Conf. on CL (6th Intl. Conf. on Database Systems). LNAI 1861, Springer, Heidelberg 2000, 972–986

    Google Scholar 

  6. Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, L. Lakhal: Mining Frequent Patterns with Counting Inference. SIGKDD Explorations 2(2), Special Issue on Scalable Algorithms, 2000, 71–80

    Article  Google Scholar 

  7. S. D. Bay. The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine, CA: University of California, Department of Information and Computer Science.

  8. R. J. Bayardo: Efficiently Mining Long Patterns from Databases. Proc. SIGMOD’ 98, 1998, 85–93

    Google Scholar 

  9. K. Becker, G. Stumme, R. Wille, U. Wille, M. Zickwol.: Conceptual Information Systems Discussed Through an IT-Security Tool. In: R. Dieng, O. Corby (eds.): Knowledge Engineering and Knowledge Management. Methods, Models, and Tools. Proc. EKAW’ 00. LNAI 1937, Springer, Heidelberg 2000, 352–365

    Google Scholar 

  10. S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing association rules to correlation. In Proc. ACM SIGMOD Int’l Conf. on Management of Data, pages 265–276, May 1997.

    Google Scholar 

  11. S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data. In Proc. ACM SIGMOD Int’l Conf. on Management of Data, pages 255–264, May 1997.

    Google Scholar 

  12. C. Carpineto, G. Romano: GALOIS: An Order-Theoretic Approach to Conceptual Clustering. Machine Learning. Proc. ICML 1993, Morgan Kaufmann Prublishers 1993, 33–40

    Google Scholar 

  13. R. Cole, G. Stumme: CEM-A Conceptual Email Manager. In: B. Ganter, G. W. Mineau (eds.): Conceptual Structures: Logical, Linguistic, and Computational Issues. Proc. ICCS’ 00. LNAI 1867, Springer, Heidelberg 2000, 438–452

    Google Scholar 

  14. H. Dicky, C. Dony, M. Huchard, T Libourel: On automatic class insertion with overloading. OOPSLA 1996, 251–267

    Google Scholar 

  15. B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg 1999

    MATH  Google Scholar 

  16. R. Godin, H. Mili, G. Mineau, R. Missaoui, A. Ar., T. Chau: Design of classhierarchies based on concept (Galois) lattices. TAPOS 4(2), 1998, 117–134

    Google Scholar 

  17. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, Sept. 2000.

    Google Scholar 

  18. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In Proc. ACM SIGMOD Int’l Conf. on Management of Data, pages 1–12, May 2000.

    Google Scholar 

  19. J. Hereth, G. Stumme, U. Wille, R. Wille: Conceptual Knowledge Discovery and Data Analysis. In: B. Ganter, G. Mineau (eds.): Conceptual Structures: Logical, Linguistic, and Computational Structures. Proc. ICCS 2000. LNAI 1867, Springer, Heidelberg 2000, 421–437

    Google Scholar 

  20. Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen: TANE: an efficient algorithm for discovering functional and approximate dependencies. The Computer Journal 42(2), 1999, 100–111

    Article  MATH  Google Scholar 

  21. M. Kamber, J. Han, and Y. Chiang. Metarule-guided mining of multi-dimensional association rules using data cubes. In Proc. of the 3rd KDD Int’l Conf., Aug. 1997.

    Google Scholar 

  22. B. Lent, A. Swami, and J. Widom. Clustering association rules. In Proc. of the 13th Int’l Conf. on Data Engineering (ICDE), pages 220–231, Mar. 1997.

    Google Scholar 

  23. D. Lin and Z. M. Kedem. Pincer-Search: A new algorithm for discovering the maximum frequent set. In Proc. of the 6th Int’l Conf.on Extending Database Technology (EDBT), pages 105–119, Mar. 1998.

    Google Scholar 

  24. M. Luxenburger: Implications partielles dans un contexte. Mathématiques, Informatique et Sciences Humaines 29(113), 1991, 35–55

    MathSciNet  Google Scholar 

  25. K. Mackensen, U. Wille: Qualitative Text Analysis Supported by Conceptual Data Systems. Quality and Quantity: Internatinal Journal of Methodology 2(33), 1999, 135–156

    Google Scholar 

  26. H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery, 1(3):259–289, Sept. 1997.

    Article  Google Scholar 

  27. G. Mineau, G., R. Godin: Automatic Structuring of Knowledge Bases by Conceptual Clustering. IEEE Transactions on Knowledge and Data Engineering 7(5), 1995, 824–829

    Article  Google Scholar 

  28. M. Missiko., M. Scholl: An algorithm for insertion into a lattice: application to type classification. Proc. 3rd Intl. Conf. FODO 1989. LNCS 367, Springer, Heidelberg 1989, 64–82

    Google Scholar 

  29. J. S. Park, M. S. Chen, and P. S. Yu. An efficient hash based algorithm for mining association rules. In Proc. ACM SIGMOD Int’l Conf. on Management of Data, pages 175–186, May 1995.

    Google Scholar 

  30. N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal: Pruning Closed Itemset Lattices for Association Rules. 14iémes Journées Bases de Données Avancées (BDA’98), Hammamet, Tunisia, 26–30 October 1998

    Google Scholar 

  31. N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal: Efficient mining of association rules using closed itemset lattices. Journal of Information Systems, 24(1), 1999, 25–46

    Article  Google Scholar 

  32. N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal: Discovering frequent closed itemsets for association rules. Proc. ICDT’ 99. LNCS 1540. Springer, Heidelberg 1999, 398–416

    Google Scholar 

  33. J. Pei, J. Han, R. Mao: CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery 2000, 21–30

    Google Scholar 

  34. A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. In Proc. of the 21th Int’l Conf. on Very Large Data Bases (VLDB), pages 432–444, Sept. 1995.

    Google Scholar 

  35. P. Scheich, M. Skorsky, F. Vogt, C. Wachter, R. Wille: Conceptual Data Systems. In: O. Opitz, B. Lausen, R. Klar (eds.): Information and Classification. Springer, Berlin-Heidelberg 1993, 72–84

    Google Scholar 

  36. I. Schmitt, G. Saake: Merging inheritance hierarchies for database integration. Proc. 3rd IFCIS Intl. Conf. on Cooperative Information Systems, New York City, Nework, USA, August 20–22, 1998, 122–131

    Google Scholar 

  37. C. Silverstein, S. Brin, and R. Motwani. Beyond market baskets: Generalizing association rules to dependence rules. Data Mining and Knowledge Discovery, 2(1), Jan. 1998.

    Google Scholar 

  38. S. Strahringer, R. Wille: Conceptual clustering via convex-ordinal structures. In: O. Opitz, B. Lausen, R. Klar (eds.): Information and Classification. Springer, Berlin-Heidelberg 1993, 85–98

    Google Scholar 

  39. G. Stumme: Conceptual Knowledge Discovery with Frequent Concept Lattices. FB4-Preprint 2043, TU Darmstadt 1999

    Google Scholar 

  40. G. Stumme, R. Taouil, Y. Bastide, L. Lakhal: Conceptual Clustering with Iceberg Concept Lattices. Proc. GI-Fachgruppentrefien Maschinelles Lernen’ 01. Universit ät Dortmund 763, Oktober 2001

    Google Scholar 

  41. G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal: Fast computation of concept lattices using data mining techniques. Proc. 7th Intl. Workshop on Knowledge Representation Meets Databases, Berlin, 21–22. August 2000. CEUR-Workshop Proceeding. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/

  42. G. Stumme, R. Taouil, Y. Bastide, N. Pasqier, L. Lakhal: Computing Iceberg Concept Lattices with Titanic. J. on Knowledge and Data Engineering 42(2), 2002, 189–222

    Article  MATH  Google Scholar 

  43. G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal: Intelligent Structuring and Reducing of Association Rules with Formal Concept Analysis. In: F. Baader. G. Brewker, T. Eiter (eds.): KI 2001: Advances in Artificial Intelligence. Proc. KI 2001. LNAI 2174, Springer, Heidelberg 2001, 335–350

    Google Scholar 

  44. G. Stumme, R. Wille, U. Wille: Conceptual Knowledge Discovery in Databases Using Formal Concept Analysis Methods. In: J. M. Żytkow, M. Quafofou (eds.): Principles of Data Mining and Knowledge Discovery. Proc. 2nd European Symposium on PKDD’98, LNAI 1510, Springer, Heidelberg 1998, 450–458

    Google Scholar 

  45. G. Stumme, R. Wille (eds.): Begri.iche Wissensverarbeitung-Methoden und Anwendungen. Springer, Heidelberg 2000

    Google Scholar 

  46. G. Stumme: Formal Concept Analysis on its Way from Mathematics to Computer Science. Proc. 10th Intl. Conf. on Conceptual Structures (ICCS 2002). LNCS, Springer, Heidelberg 2002

    Google Scholar 

  47. R. Taouil, N. Pasquier, Y. Bastide, L. Lakhal: Mining Bases for Association Rules Using Closed Sets. Proc. 16th Intl. Conf. ICDE 2000, San Diego, CA, US, February 2000, 307

    Google Scholar 

  48. H. Toivonen. Sampling large databases for association rules. In Proc. of the 22nd Int’l Conf. on Very Large Data Bases (VLDB), pages 134–145, Sept. 1996.

    Google Scholar 

  49. F. Vogt, R. Wille: TOSCANA-A graphical tool for analyzing and exploring data. LNCS 894, Springer, Heidelberg 1995, 226–233

    Google Scholar 

  50. K. Waiyamai, R. Taouil, L. Lakhal: Towards an object database approach for managing concept lattices. Proc. 16th Intl. Conf. on Conceptual Modeling, LNCS 1331, Springer, Heidelberg 1997, 299–312

    Google Scholar 

  51. R. Wille: Restructuring lattice theory: an approach based on hierarchies of concepts. In: I. Rival (ed.). Ordered sets. Reidel, Dordrecht-Boston 1982, 445–470

    Google Scholar 

  52. A. Yahia, L. Lakhal, J. P. Bordat, R. Cicchetti: iO2: An algorithmic method for building inheritance graphs in object database design. Proc. 15th Intl. Conf. on Conceptual Modeling. LNCS 1157, Springer, Heidelberg 1996, 422–437

    Google Scholar 

  53. M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery of association rules. In Proc. of the 3rd Int’l Conf. on Knowledge Discovery in Databases (KDD), pages 283–286, Aug. 1997.

    Google Scholar 

  54. M. J. Zaki, M. Ogihara: Theoretical Foundations of Association Rules, 3rd SIGMOD’ 98 Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD), Seattle, WA, June 1998, 7:1–7:8

    Google Scholar 

  55. M. J. Zaki, C.-J. Hsiao: ChARM: An efficient algorithm for closed association rule mining. Technical Report 99-10, Computer Science Dept., Rensselaer Polytechnic Institute, October 1999

    Google Scholar 

  56. M. J. Zaki: Generating non-redundant association rules. Proc. KDD 2000. 34–43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stumme, G. (2002). Efficient Data Mining Based on Formal Concept Analysis. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds) Database and Expert Systems Applications. DEXA 2002. Lecture Notes in Computer Science, vol 2453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46146-9_53

Download citation

  • DOI: https://doi.org/10.1007/3-540-46146-9_53

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44126-7

  • Online ISBN: 978-3-540-46146-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics