Abstract
Formal Concept Analysis is an unsupervised learning technique for conceptual clustering. We introduce the notion of iceberg concept lattices and show their use in Knowledge Discovery in Databases (KDD). Iceberg lattices are designed for analyzing very large databases. In particular they serve as a condensed representation of frequent patterns as known from association rule mining.
In order to show the interplay between Formal Concept Analysis and association rule mining, we discuss the algorithm Titanic. We show that iceberg concept lattices are a starting point for computing condensed sets of association rules without loss of information, and are a visualization method for the resulting rules.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Agrawal, T. Imielinski, A. Swami. Mining association rules between sets of items in large databases. Proc. SIGMOD Conf., 1993, 207–216
R. Agrawal and R. Srikant. Fast algorithms for mining association rules. Proc. VLDB Conf., 1994, 478–499 (Expanded version in IBM Report RJ9839)
R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. of the 11th Int’l Conf. on Data Engineering (ICDE), pages 3–14, Mar. 1995.
A. Arnauld, P. Nicole: La logique ou l’art de penser-contenant, outre les règles communes, plusieurs observations nouvelles, propres à former le jugement. Ch. Saveux, Paris 1668
Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, L. Lakhal: Mining Minimal Non-Redundant Association Rules Using Frequent Closed Itemsets. In: J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, P. J. Stuckey (eds.): Computational Logic-CL. Proc. 1st Intl. Conf. on CL (6th Intl. Conf. on Database Systems). LNAI 1861, Springer, Heidelberg 2000, 972–986
Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, L. Lakhal: Mining Frequent Patterns with Counting Inference. SIGKDD Explorations 2(2), Special Issue on Scalable Algorithms, 2000, 71–80
S. D. Bay. The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine, CA: University of California, Department of Information and Computer Science.
R. J. Bayardo: Efficiently Mining Long Patterns from Databases. Proc. SIGMOD’ 98, 1998, 85–93
K. Becker, G. Stumme, R. Wille, U. Wille, M. Zickwol.: Conceptual Information Systems Discussed Through an IT-Security Tool. In: R. Dieng, O. Corby (eds.): Knowledge Engineering and Knowledge Management. Methods, Models, and Tools. Proc. EKAW’ 00. LNAI 1937, Springer, Heidelberg 2000, 352–365
S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing association rules to correlation. In Proc. ACM SIGMOD Int’l Conf. on Management of Data, pages 265–276, May 1997.
S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data. In Proc. ACM SIGMOD Int’l Conf. on Management of Data, pages 255–264, May 1997.
C. Carpineto, G. Romano: GALOIS: An Order-Theoretic Approach to Conceptual Clustering. Machine Learning. Proc. ICML 1993, Morgan Kaufmann Prublishers 1993, 33–40
R. Cole, G. Stumme: CEM-A Conceptual Email Manager. In: B. Ganter, G. W. Mineau (eds.): Conceptual Structures: Logical, Linguistic, and Computational Issues. Proc. ICCS’ 00. LNAI 1867, Springer, Heidelberg 2000, 438–452
H. Dicky, C. Dony, M. Huchard, T Libourel: On automatic class insertion with overloading. OOPSLA 1996, 251–267
B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg 1999
R. Godin, H. Mili, G. Mineau, R. Missaoui, A. Ar., T. Chau: Design of classhierarchies based on concept (Galois) lattices. TAPOS 4(2), 1998, 117–134
J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, Sept. 2000.
J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In Proc. ACM SIGMOD Int’l Conf. on Management of Data, pages 1–12, May 2000.
J. Hereth, G. Stumme, U. Wille, R. Wille: Conceptual Knowledge Discovery and Data Analysis. In: B. Ganter, G. Mineau (eds.): Conceptual Structures: Logical, Linguistic, and Computational Structures. Proc. ICCS 2000. LNAI 1867, Springer, Heidelberg 2000, 421–437
Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen: TANE: an efficient algorithm for discovering functional and approximate dependencies. The Computer Journal 42(2), 1999, 100–111
M. Kamber, J. Han, and Y. Chiang. Metarule-guided mining of multi-dimensional association rules using data cubes. In Proc. of the 3rd KDD Int’l Conf., Aug. 1997.
B. Lent, A. Swami, and J. Widom. Clustering association rules. In Proc. of the 13th Int’l Conf. on Data Engineering (ICDE), pages 220–231, Mar. 1997.
D. Lin and Z. M. Kedem. Pincer-Search: A new algorithm for discovering the maximum frequent set. In Proc. of the 6th Int’l Conf.on Extending Database Technology (EDBT), pages 105–119, Mar. 1998.
M. Luxenburger: Implications partielles dans un contexte. Mathématiques, Informatique et Sciences Humaines 29(113), 1991, 35–55
K. Mackensen, U. Wille: Qualitative Text Analysis Supported by Conceptual Data Systems. Quality and Quantity: Internatinal Journal of Methodology 2(33), 1999, 135–156
H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery, 1(3):259–289, Sept. 1997.
G. Mineau, G., R. Godin: Automatic Structuring of Knowledge Bases by Conceptual Clustering. IEEE Transactions on Knowledge and Data Engineering 7(5), 1995, 824–829
M. Missiko., M. Scholl: An algorithm for insertion into a lattice: application to type classification. Proc. 3rd Intl. Conf. FODO 1989. LNCS 367, Springer, Heidelberg 1989, 64–82
J. S. Park, M. S. Chen, and P. S. Yu. An efficient hash based algorithm for mining association rules. In Proc. ACM SIGMOD Int’l Conf. on Management of Data, pages 175–186, May 1995.
N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal: Pruning Closed Itemset Lattices for Association Rules. 14iémes Journées Bases de Données Avancées (BDA’98), Hammamet, Tunisia, 26–30 October 1998
N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal: Efficient mining of association rules using closed itemset lattices. Journal of Information Systems, 24(1), 1999, 25–46
N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal: Discovering frequent closed itemsets for association rules. Proc. ICDT’ 99. LNCS 1540. Springer, Heidelberg 1999, 398–416
J. Pei, J. Han, R. Mao: CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery 2000, 21–30
A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. In Proc. of the 21th Int’l Conf. on Very Large Data Bases (VLDB), pages 432–444, Sept. 1995.
P. Scheich, M. Skorsky, F. Vogt, C. Wachter, R. Wille: Conceptual Data Systems. In: O. Opitz, B. Lausen, R. Klar (eds.): Information and Classification. Springer, Berlin-Heidelberg 1993, 72–84
I. Schmitt, G. Saake: Merging inheritance hierarchies for database integration. Proc. 3rd IFCIS Intl. Conf. on Cooperative Information Systems, New York City, Nework, USA, August 20–22, 1998, 122–131
C. Silverstein, S. Brin, and R. Motwani. Beyond market baskets: Generalizing association rules to dependence rules. Data Mining and Knowledge Discovery, 2(1), Jan. 1998.
S. Strahringer, R. Wille: Conceptual clustering via convex-ordinal structures. In: O. Opitz, B. Lausen, R. Klar (eds.): Information and Classification. Springer, Berlin-Heidelberg 1993, 85–98
G. Stumme: Conceptual Knowledge Discovery with Frequent Concept Lattices. FB4-Preprint 2043, TU Darmstadt 1999
G. Stumme, R. Taouil, Y. Bastide, L. Lakhal: Conceptual Clustering with Iceberg Concept Lattices. Proc. GI-Fachgruppentrefien Maschinelles Lernen’ 01. Universit ät Dortmund 763, Oktober 2001
G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal: Fast computation of concept lattices using data mining techniques. Proc. 7th Intl. Workshop on Knowledge Representation Meets Databases, Berlin, 21–22. August 2000. CEUR-Workshop Proceeding. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/
G. Stumme, R. Taouil, Y. Bastide, N. Pasqier, L. Lakhal: Computing Iceberg Concept Lattices with Titanic. J. on Knowledge and Data Engineering 42(2), 2002, 189–222
G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal: Intelligent Structuring and Reducing of Association Rules with Formal Concept Analysis. In: F. Baader. G. Brewker, T. Eiter (eds.): KI 2001: Advances in Artificial Intelligence. Proc. KI 2001. LNAI 2174, Springer, Heidelberg 2001, 335–350
G. Stumme, R. Wille, U. Wille: Conceptual Knowledge Discovery in Databases Using Formal Concept Analysis Methods. In: J. M. Żytkow, M. Quafofou (eds.): Principles of Data Mining and Knowledge Discovery. Proc. 2nd European Symposium on PKDD’98, LNAI 1510, Springer, Heidelberg 1998, 450–458
G. Stumme, R. Wille (eds.): Begri.iche Wissensverarbeitung-Methoden und Anwendungen. Springer, Heidelberg 2000
G. Stumme: Formal Concept Analysis on its Way from Mathematics to Computer Science. Proc. 10th Intl. Conf. on Conceptual Structures (ICCS 2002). LNCS, Springer, Heidelberg 2002
R. Taouil, N. Pasquier, Y. Bastide, L. Lakhal: Mining Bases for Association Rules Using Closed Sets. Proc. 16th Intl. Conf. ICDE 2000, San Diego, CA, US, February 2000, 307
H. Toivonen. Sampling large databases for association rules. In Proc. of the 22nd Int’l Conf. on Very Large Data Bases (VLDB), pages 134–145, Sept. 1996.
F. Vogt, R. Wille: TOSCANA-A graphical tool for analyzing and exploring data. LNCS 894, Springer, Heidelberg 1995, 226–233
K. Waiyamai, R. Taouil, L. Lakhal: Towards an object database approach for managing concept lattices. Proc. 16th Intl. Conf. on Conceptual Modeling, LNCS 1331, Springer, Heidelberg 1997, 299–312
R. Wille: Restructuring lattice theory: an approach based on hierarchies of concepts. In: I. Rival (ed.). Ordered sets. Reidel, Dordrecht-Boston 1982, 445–470
A. Yahia, L. Lakhal, J. P. Bordat, R. Cicchetti: iO2: An algorithmic method for building inheritance graphs in object database design. Proc. 15th Intl. Conf. on Conceptual Modeling. LNCS 1157, Springer, Heidelberg 1996, 422–437
M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery of association rules. In Proc. of the 3rd Int’l Conf. on Knowledge Discovery in Databases (KDD), pages 283–286, Aug. 1997.
M. J. Zaki, M. Ogihara: Theoretical Foundations of Association Rules, 3rd SIGMOD’ 98 Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD), Seattle, WA, June 1998, 7:1–7:8
M. J. Zaki, C.-J. Hsiao: ChARM: An efficient algorithm for closed association rule mining. Technical Report 99-10, Computer Science Dept., Rensselaer Polytechnic Institute, October 1999
M. J. Zaki: Generating non-redundant association rules. Proc. KDD 2000. 34–43
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stumme, G. (2002). Efficient Data Mining Based on Formal Concept Analysis. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds) Database and Expert Systems Applications. DEXA 2002. Lecture Notes in Computer Science, vol 2453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46146-9_53
Download citation
DOI: https://doi.org/10.1007/3-540-46146-9_53
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44126-7
Online ISBN: 978-3-540-46146-3
eBook Packages: Springer Book Archive