
Transactional Workflows or Workflow Transactions?

Paul Grefen

Computer Science Department, University of Twente

P.O. Box 217, 7500 AE Enschede, Netherlands

http://www.cs.utwente.nl/~grefen

Abstract. Workflows have generally been accepted as a means to model and

support processes in complex organizations. The fact that these processes re-

quire robustness and clear semantics has generally been observed and has lead

to the combination of workflow and transaction concepts. Many variations on

this combination exist, leading to many approaches to transactional workflow

support. No clear classification of these approaches has been developed, how-

ever, resulting in a badly understood field. To deal with this problem, we de-

scribe a clear taxonomy of transactional workflow models, based on the relation

between workflow and transaction concepts. We show that the classes in the

taxonomy can directly be related to specification language and architecture

types for workflow and transaction management systems. We compare the

classes with respect to their characteristics and place existing approaches in the

taxonomy – thus offering a basis for analysis of transactional workflow support.

1 Introduction

Workflows have generally been accepted as a paradigm for modeling and supporting

processes in complex organizations. Often workflow processes have a business char-

acter, but workflow concepts have also been used for other processes types, e.g., sci-

entific processes or software production processes. The use of workflows for core

processes of organizations has lead to the requirements of clear process semantics and

robustness in process execution, both in regular process execution and under excep-

tion or error conditions. The notions of transaction management, already used for

several decades in the database world, have been combined with workflow notions to

satisfy these requirements. Resulting from this, the notion of transactional workflow

or workflow transaction has emerged. Many variations on the notion of transactional

workflow or workflow transaction have been developed, however, by merging the

worlds of workflow and transaction management in different ways – the two more or

less synonymous terms are an omen of this. No clear classification has been devel-

oped yet that provides a framework for the analysis of transactional workflow models

and systems supporting these models. Matching models and systems with application

requirements and comparing approaches is therefore not easy.

In this paper, we present a classification framework that provides two main classes for

the combination of workflows and transactions, based on the relation between work-

flow and transaction concepts. The main classes are further refined into subclasses

with specific properties, resulting in six basic classes. We show that the conceptual

classes can directly be mapped to specification language and architecture classes for

workflow and transaction management support. We analyze the classes with respect

to their goal, means to achieve this goal, and advantages and disadvantages. The

R. Cicchetti et al. (Eds.): DEXA 2002, LNCS 2453, pp. 60–69, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Transactional Workflows or Workflow Transactions? 61

Transactional

Workflow

TR+WF

INT

WFTRWF TR

SEP

Figure 1. Transactional workflow taxonomy

TR/WFWF/TR

framework and analysis together provide a clear basis for comparing approaches and

selecting specific approaches for specific application classes.

The structure of this paper is as follows. In Section 2, we describe our basic taxonomy

that underlies the classification presented in this paper. In Section 3, we present the

conceptual point of view of our classification, focused around language aspects. Sec-

tion 4 presents the system point of view, centered on architecture aspects. In Sec-

tion 5, we apply the framework by comparing the various classes and classifying

existing approaches to transactional workflows. Section 6 contains conclusions.

2 The Taxonomy

To support transactional workflows, there are two basic approaches: either transac-

tional aspects and workflow aspects are treated as separate issues, or they are seen as

one integrated issue. In the former case, separate transaction and workflow models

exist that are combined to obtain transactional workflows. In the latter case, one sin-

gle transactional workflow model is used. These two main classes are refined below.

In the situation where we have separate workflow and transaction models, we need to

relate these two models. We have three possible basic relations, based on the abstrac-

tion relation between the models:

Workflows over transactions (WF/TR): workflows are more abstract than transactions

– transaction models are used to provide semantics to workflow models.

Transactions over workflows (TR/WF): transactions are more abstract than workflows

– workflow models are used to provide process structure to transaction models.

Transactions and workflows as peers (TR+WF): workflow and transaction models

exist at the same abstraction level – workflow and transaction models can be seen

as two submodels of an implicit, loosely coupled process model.

In the case of one single model for both workflow and transaction aspects, obviously

there is no relation between models. There are, however, three main variants with

respect to the nature of the single model:

Hybrid transactional workflow model (TRWF): a single hybrid model is used that

contains both transaction and workflow concepts.

Transactions in workflows (WF): a single workflow model is used, in which transac-

tional aspects are mapped to workflow primitives.

62 P. Grefen

Workflows in transactions (TR): a single transaction model is used, in which work-

flow aspects are mapped to transaction primitives.

The resulting taxonomy is depicted in Figure 1, in which the ‘SEP’ main class con-

tains basic classes with separate models for workflows and transactions, the ‘INT’

main class contains basic classes with a single integrated model. We use this taxon-

omy to discuss conceptual and architectural characteristics of each of the classes.

3 The Conceptual Point of View

In this section, we discuss the conceptual point of view of our framework. To do so,

we will take the specification language perspective, which we explain below. Then,

the various classes of our taxonomy are discussed from this language perspective.

In the conceptual point of view, we are interested in the conceptual specification of

transactional workflows formulated in one or more specification languages. Given the

two main classes in the taxonomy of Figure 1, we can have two situations. In the first

situation, there is a separate language for specifying workflow aspects, the workflow

definition language (WFDL), and a separate language for specifying transaction as-

pects, the transaction definition language (TRDL). In the second situation, there is an

integrated language for specifying both workflow and transaction aspects, the transac-

tional workflow definition language (TRWFDL).

If we have two languages, the languages can have two relations: either one language

is a refinement of the other, or the two languages are orthogonal with respect to each

other. If the two languages have a refinement relation, we have the following. A lan-

guage offers primitives to specify transitions in a state space. A language L2 is a re-

finement of a language L1 if there is a notion of correspondence (a relation in the

mathematical sense) between its state space and that of L1, and between its primitives

and those of L1, such that the transitions specified by the primitives maintain the cor-

respondence between states (see [11] for a further explanation). If the TRDL is a

refinement of the WFDL, the WFDL level contains workflow attributes and the in-

termediate states at the TRDL level are related to transaction states. If the WFDL is a

refinement of the TRDL, the TRDL level contains transactional attributes and the

intermediate states at the WFDL level are related to control flow states.

In the integrated approach, all aspects are merged into a single language, covering a

state space that is the cross product of the two state spaces discussed above.

3.1 Separate Languages

The main reason for using two separate languages is separation of concerns in dealing

with control flow and transaction aspects in complex applications. Below, we discuss

the three basic classes of the separate models approach.

In the WF/TR case, the control flow aspect is leading in the specification of transac-

tional workflows. Low-level workflow semantics are based on transactional semantics

of individual workflow tasks or groups of workflow tasks. Hence, the TRDL is a

refinement of the WFDL. Primitives of the WFDL are mapped to primitives of the

TRDL. Transaction semantics are often imported from the data management level –

the TRDL is a sublanguage of a data manipulation language (DML) in this case. The

WF/TR approach is taken in most commercial workflow management systems that

Transactional Workflows or Workflow Transactions? 63

support (usually limited) transactional behavior of workflows. Below, we show a

simple example in which individual workflow tasks can be parameterized to behave

as business transactions (atomic and isolated units of execution). On the left, we see

the specification of a workflow task. The second and third lines of this specification

are expanded on a lower abstraction level to the transaction specification shown on

the right. When executed, the TRDL specification will induce intermediate states with

respect to the WFDL specification.

W
F
D
L

TASK task1
 BUSINESS TRANSACTION
 USES FORM form1
END TASK

T
R
D
L

BEGIN TRANSACTION
 READ form1.field1
 READ form1.field2
 USE form1
 WRITE form1.field1
 WRITE form1.field2
 IF status_ok
 THEN COMMIT TRANSACTION
 ELSE ABORT TRANSACTION
END TRANSACTION

In the TR/WF class, transactional behavior is the leading aspect in the specification of

transactional workflows. High-level transactional semantics are specified with a

workflow as elaboration of the underlying process structure. Hence, the WFDL is a

refinement of the TRDL. The TR/WF approach is applied for example in workflow

management for e-commerce applications. Here, the transaction between two business

partners is the starting point and the elaboration of the control flow a refinement of

the transaction. We show a simplified example below. On the left, we see a TRDL

specification of a transaction that states transactional properties. The control flow is

seen as an implementation detail to be specified at a lower level of abstraction. This is

elaborated in the WFDL specification on the right. Note that the WFDL specification

concerns a non-linear process, which is not easy to specify in traditional TRDLs. The

execution of the WFDL specification will introduce intermediate states with respect to

the execution of the TRDL specification.

T
R
D
L

TRANSACTION tr1
 EXECUTE ATOMIC
 IMPLEMENTATION wf1
END TRANSACTION

W
F
D
L

WORKFLOW wf1
 TASK task1 task2 task3 task4
 SEQUENCE task1 task2
 SEQUENCE task1 task3
 SEQUENCE task2 task4
 SEQUENCE task3 task4
END WORKFLOW

In the TR+WF approach, there is a balance between control flow and transactional

behavior. High-level transactional semantics are defined on the same conceptual level

as workflow processes. Hence, workflow and transaction specifications refer to each

other on the same level of abstraction. Below, we show a stylized example. On the

left, we see a WFDL specification that specifies a control flow and refers to the

TRDL specification for the transactional properties. The TRDL specification shown

on the right imports the task list from the WFDL specification and specifies transac-

tional properties over this. The TRDL specification specifies compensating tasks [5]

and a safepoint [10] to allow flexible rollback by compensation. Control flow and

compensation functionality can be changed independently of each other, thus creating

a separation of concerns between workflow and transaction specification.

64 P. Grefen

W
F
D
L

WORKFLOW wf1
 REFERS TRANSACTION tr1
 TASK task1 task2 task3
 SEQUENCE task1 task2
 SEQUENCE task2 task3
END WORKFLOW

T
R
D
L

BEGIN TRANSACTION tr1
 REFERS WORKFLOW wf1
 COMP ctask1 task1
 COMP ctask2 task2
 SAFEPOINT task1
END TRANSACTION

3.2 Integrated Models

In the integrated model class of the taxonomy, workflow and transaction semantics

are combined into one single model.

In the TRWF class of our taxonomy, we find hybrid workflow and transaction mod-

els. These models are reflected in hybrid transactional workflow specification lan-

guages. These languages contain typical workflow-related primitives – e.g., to express

control flows – and transaction-related primitives – e.g., to express atomicity or isola-

tion requirements. An obvious way to create a TRWF language is to ‘merge’ a pair or

languages of the TR+WF class. Following this approach, we can obtain the example

below from the TR+WF example shown above. Clearly, the TRWF and TR+WF

approaches are exchangeable to some extent.

T
R
W
F
D
L

WORKFLOW wf1
 TASK task1 COMP ctask1 SAFEPOINT
 TASK task2 COMP ctask2
 TASK Task3 COMP none
 SEQUENCE task1 task2
 SEQUENCE task2 task3
END WORKFLOW

In the WF class, transactional semantics are expressed in workflow processes. Spe-

cific process patterns are used to express transaction behavior of workflow processes.

An example is the specification of compensation patterns in workflow definitions to

achieve relaxed atomicity characteristics for a workflow. We show an example below.

In the WF specification, we see the definition of regular tasks and a regular control

flow (three consecutive tasks) and the definition of compensating tasks and compen-

sating control flow (two consecutive tasks). The compensating control flow is linked

to the regular control flow through or-splits (alternative paths). At an or-split, a condi-

tion is evaluated to check whether rollback of the workflow is required – if not, the

regular control flow is followed – if so, the compensating control flow is followed.

Note that the example is in fact a static specification of all possible cases of the dy-

namic compensation behavior of the TRWF example above.

W
F
D
L

WORKFLOW wf1
 TASK task1 task2 task3 # regular tasks
 TASK ctask1 ctask2 # compensating tasks
 SPLIT or1 or2
 SEQUENCE task1 or1 # start regular control flow
 SEQUENCE or1 task2
 SEQUENCE task2 or2
 SEQUENCE or2 task3
 SEQUENCE or1 ctask1 # start compensation control flow
 SEQUENCE or2 ctask2
 SEQUENCE ctask2 ctask1
END WORKFLOW

In the TR class of the taxonomy, workflow semantics are expressed in transaction

specifications. In this approach, transactions have structured processes as their action

Transactional Workflows or Workflow Transactions? 65

specification. An example is shown below. Here we see a transaction consisting of

two subtransactions that can be executed in parallel – thus constituting a rudimentary

form of control flow.

T
R
D
L

TRANSACTION tr1
 SUBTRANSACTION s1
 action1; action2
 END SUBTRANSACTION
 SUBTRANSACTION s2
 action3; action4
 END SUBTRANSACTION
 PARALLEL s1 s2
END TRANSACTION

4 The System Point of View

After having discussed the conceptual point of view in the previous section, we turn

to the system point of view in this section. Where the conceptual point of view ex-

plains the ‘what’, the system point of view explains the ‘how’ – i.e., the support of

workflow and transaction models.

We base the system point of view on the architecture aspect, focusing on the high-

level structure of transactional workflow support systems. We use abstract architec-

tures to identify the elementary system characteristics of the classes of the taxonomy.

We relate these abstract architectures to concrete architectures in Section 5. In the

description of the architectures, we place workflow management and transaction

management modules on top of a function and data support (FDS) layer. The details

of this layer are not relevant in the context of this paper.

Below, we turn to the various classes of transactional workflows, again organized as

depicted in Figure 1.

4.1 Separate Models

In the separate models category of our taxonomy, we have separate workflow and

transaction management modules in the architecture (WFM respectively TRM). These

modules can have three architectural relations (as depicted in Figure 2): WFM as

client of a TRM server, TRM as client of a WFM server, and WFM and TRM as peer-

to-peer modules. These three architectures coincide with the three classes

WFM/TRM, TRM/WFM and TRM+WFM. In discussing the characteristics of the

three classes, the focus is on the WFM-TRM interface, as indicated by triangles in

Figure 2. This interface is used in all three architectures to synchronize the control

flow state in the WFM and transaction state in the TRM.

The WFM/TRM architecture is depicted in the left hand side of Figure 2. The inter-

face between WFM and TRM is both a control and a data channel. The WFM uses the

TRM interface to open a transaction context and perform data manipulation opera-

tions in this context. In this class, TRM and FDS are often integrated into one data-

base application environment based on a DBMS with built-in transaction management

functionality. The WFM/TRM architecture is ‘standard’ for commercial systems.

66 P. Grefen

WFMWFM

TRMTRM

TRMTRM

WFMWFM WFMWFMTRMTRM

FDSFDSFDSFDS

FDSFDS

Figure 2. WFM/TRM, TRM/WFM and TRM+WFM architectures

The TRM/WFM architecture is depicted in the center of Figure 2. The interface be-

tween TRM and WFM is both a control and a data channel. The TRM uses the WFM

interface to open a workflow context and next to invoke control flow primitives. We

observe this architecture class in e-commerce environments where a high-level trans-

action engine invokes processes supported by workflow management technology.

The TRM+WFM architecture is depicted in the right hand side of Figure 2. In this

architecture, we have a TRM as transaction server and a WFM as process server in a

peer-to-peer relation. The interface between WFM and TRM is strictly a control

channel: the WFM communicates process states to the TRM, the TRM communicates

transaction contexts and workflow commands to effectuate transactional effects on

process states to the WFM. Note that this interface is not a standard interface as de-

fined by the WfMC – its Interface 4 standard describes communication between two

workflow servers [17]. The TRM+WFM architecture is – trivially – fit for TR+WF

language support. TRWF language support is possible by filtering a TRWF specifica-

tion into the right parts for TRM and WFM.

4.2 Integrated Models

In the integrated models class of our taxonomy, we have a single transactional work-

flow management module in the architecture. This can either be a transactional work-

flow manager (TRWFM), a traditional workflow manager (WFM), or an advanced

transaction manager (TRM). The three cases are shown in Figure 3.

The TRWFM offers integrated support for transaction management and workflow

management. A hybrid transaction and workflow state is maintained within the

TRWFM. It supports languages in the TRWF and TR+WF classes. To handle

TR+WF specifications, the two subspecifications are merged into one specification by

a preprocessor.

In the WFM architecture class, the state of a transactional workflow is completely

maintained by WFM. Transactional attributes of this state are mapped to workflow

attributes. The WFM can only interpret specifications in the WF class. Specifications

in other classes (typically TRWF) have to be translated to WF format. This architec-

ture class is fit for support by commercial workflow management systems.

In the TRM class, the state of a transactional workflow is completely maintained by

the TRM. Control flow attributes of this state are implemented by transaction attrib-

utes. The TRM can only interpret specifications in the TR class. Specifications in

other classes (typically TRWF) have to be translated to TR format. Nested process

Transactional Workflows or Workflow Transactions? 67

TRWFMTRWFM WFMWFM TRMTRM

FDSFDS FDSFDS FDSFDS

Figure 3. TRWFM, WFM and TRM architectures

structures can be supported by standard transaction management technology. More

advanced structures are typically only supported by research prototypes.

5 Application of the Framework

In this section, we apply the taxonomy we have developed in two ways: we present a

comparison of the various classes with respect to their characteristics and we place

existing work in our taxonomy.

5.1 Comparing the Classes

In Table 1, we show a comparison of the classes in our taxonomy. For each class, we

list the main goal, the means used to achieve this goal, and a brief list of advantages

and disadvantages – which we explain in the sequel.

Flexibility in coupling models and separation of concerns between workflow and

transaction aspects are main advantages of the classes with separate models. Problems

with integration of models (and support based on these models) form the downside of

this aspect. Consistency of specifications is a main advantage of the single-model

approach: there are no separate models to be kept consistent. Consistency can cer-

tainly be a problem in the TR+WF class, as two specifications of a transactional

workflow exist without a ‘leading’ specification. Limited expressiveness is a clear

disadvantage of the WF and TR classes, as possible semantics of transaction aspects

are limited by available workflow primitives and vice versa. The TRWF class does

generally not have this problem, but a complex formalism with equally complex se-

mantics usually is the basis for models in this class. Finally, system support is (cur-

Table 1. Comparison of classes

class goal means advantages disadvantages

WF/TR
WF with robust

character

data management

in WFs

sep. of concerns,

flexibility, support

integration

TR/WF
TR with complex

control flow

process manage-

ment in TRs

separation of con-

cerns, flexibility

integration

TR+WF
integrated WF

and TR

coupled process

and data mngmnt

separation of con-

cerns, flexibility

integration, con-

sistency

TRWF
integrated WF

and TR

hybrid process and

data management

integration, consis-

tency

complex formal-

ism, inflexibility

WF
WF with robust

character

advanced process

management

simple formalism,

consist., support

limited expres-

siveness

TR
TR with complex

control flow

advanced TR

management

simple formalism,

consistency

limited expres-

siveness

68 P. Grefen

rently) best for the WF/TR class (supported by combinations of existing WFM and

TRM systems) and the WF class (implementable on commercial WFM systems).

5.2 Positioning Existing Approaches

In this subsection, we place a selection of existing approaches in our taxonomy. For

reasons of brevity, the overview is far from complete. We first discuss approaches in

the separate models category, then turn to the integrated model category, and finally

pay attention to an approach that combines aspects of both categories. A more elabo-

rate analysis is presented in [11].

In the Mercurius initiative [8], a WF/TR architecture has been proposed: workflow

management functionality is placed on top of transaction management functionality.

The CrossFlow approach [9, 16] is an example of the TR/WF class. In the CrossFlow

language perspective, cross-organizational transactions are specified in an electronic

contract that is mapped to workflow definitions. In the CrossFlow architecture per-

spective, inter-organizational transaction management functionality is placed on top

of workflow management systems. In [4], an approach to a language in TR+WF class

is proposed in which independence between specification of control flow on the one

hand and transactional characteristics on the other hand is a starting point.

In the context of the FlowMark WFMS, an approach for the support of business trans-

actions has been developed [14]. It uses specification of transactional spheres in a

workflow process that is interpreted by extended workflow technology – the approach

can hence be placed in the TRWF class. ObjectFlow [12] can also be placed in the

TRWF class. In the Exotica approach [1], a language is proposed in TRWF class. This

language is preprocessed to be interpretable by an architecture in the WF class. In the

FlowBack project [13], a similar approach has been developed. In the WF language

class, we find work in which transactional characteristics are coded into Petri Nets

[3]. The ConTracts model [15] is an approach in the TR class providing an environ-

ment for reliable execution of long-lived computations. The control flow primitives of

the ConTracts language have been used for the realization of transactional workflows.

TSME [6] is an approach in the TR class with comparable goals.

In the WIDE project, an approach has been developed that combines aspects of both

main classes of our taxonomy. The WIDE workflow specification language belongs

in the TRWF class, as it is a ‘classical’ workflow definition language extended with

(among other things) transactional primitives. The WIDE architecture contains three

levels [7]. The two high-level transaction management levels GTS [10] and LTS [2]

belong in the TR+WF class, the low-level LTI level [2] belongs in the WF/TR class.

6 Conclusions and Outlook

In this paper, we have described a taxonomy for transactional workflow support,

paying attention to both the conceptual and system point of view. Characteristics of

the conceptual point of view have been described in terms of specification language

classes. System characteristics have been discussed in terms of architecture topologies

and interfaces. The result is a taxonomy that provides a background for selecting or

analyzing transactional workflow support. Choosing appropriate classes from our

taxonomy for the conceptual and system points of view is a basis for the configuration

Transactional Workflows or Workflow Transactions? 69

of transactional workflow support in complex applications, where functional require-

ments and architectural context both play an important role. The choice can be differ-

ent in both points of view to some extent, but a mapping must be possible.

Completing the analysis of existing approaches to obtain an overview of the state of

the art is an obvious follow-up of the presented work. Extending the framework to

better cover multi-level transaction support is an important research direction.

Acknowledgments. Maarten Fokkinga is acknowledged for his assistance with respect to

language concepts and his feedback on the draft version of this paper.

References

1. G. Alonso et al.; Advanced Transaction Models in Workflow Contexts; Procs. Int. Conf. on

Data Engineering, 1996; pp. 574-581.

2. E. Boertjes et al.; An Architecture for Nested Transaction Support on Standard Database

Systems; Procs. 9th Int. Conf. on Database and Expert System Appls., 1998; pp. 448-459.

3. J. Dehnert; Four Systematic Steps towards Sound Business Process Models; Procs. 2nd Int.

Colloq. on Petri Net Techn. for Modeling Comm. Based Systems, 2001; pp. 55-63.

4. W. Derks et al.; Customized Atomicity Specification for Transactional Workflows; Procs.

3rd Int. Symp. on Cooperative Database Systems for Adv. Appls., 2001; pp.155-164.

5. H. Garcia-Molina, K. Salem; Sagas; Procs. 1987 ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1987; pp. 249-259.

6. D. Georgakopoulos, M. Hornick, F. Manola; Customizing Transaction Models and Mecha-

nisms in a Programmable Environment Supporting Reliable Workflow Automation; IEEE

Trans. on Knowledge and Data Engineering, (8)4, 1996; pp. 630-649.

7. P. Grefen et al.; Two-Layer Transaction Management for Workflow Management Applica-

tions; Procs. 8th Int. Conf. on Database and Expert System Appls., 1997; pp. 430-439.

8. P. Grefen, R. Remmerts de Vries; A Reference Architecture for Workflow Management

Systems; Journ. of Data & Knowledge Engineering, (27)1, 1998; pp. 31-57.

9. P. Grefen et al.; CrossFlow: Cross-Organizational Workflow Management in Dynamic

Virtual Enterprises; Int. Journ. of Computer Systems Science & Engineering, (15)5, 2000;

pp. 277-290.

10. P. Grefen, J. Vonk, P. Apers; Global Transaction Support for Workflow Management Sys-

tems: from Formal Spec.to Practical Impl.; VLDB Journal, (10)4, 2001; pp. 316-333.

11. P. Grefen; A Taxonomy for Transactional Workflows; CTIT Technical Report 02-11; Uni-

versity of Twente, 2002.

12. M. Hsu, C. Kleissner; ObjectFlow and Recovery in Workflow Systems; in: V. Kumar, M.

Hsu; Recovery Mechanisms in Database Systems; Prentice Hall, 1998; pp. 505-527.

13. B. Kiepuszewski, R. Muhlberger, M. Orlowska; FlowBack: Providing Backward Recovery

for WFMs; Procs. ACM SIGMOD Int. Conf. on Management of Data, 1998; pp. 555-557.

14. F. Leymann; Supporting Business Transactions via Partial Backward Recovery in WFMs;

Procs. Datenbanksysteme in Büro, Technik und Wissenschaft, 1995; pp. 51-70.

15. A. Reuter, K. Schneider, F. Schwenkreis; Contracts Revisited; in: S. Jajodia, L. Kersch-

berg; Adv.Transaction Models and Architectures; Kluwer Academic, 1997; pp. 127-151.

16. J. Vonk et al.; Cross-Organizational Transaction Support for Virtual Enterprises; Procs. 5th

Int. Conf. on Cooperative Information Systems, 2000; pp. 323-334.

17. Workflow Management Coalition Workflow Standard – Interoperability Abstract Specifica-

tion; Doc. No. WfMC TC-1012; Workflow Management Coalition, 1996.

	1 Introduction
	2 The Taxonomy
	3 The Conceptual Point of View
	3.1 Separate Languages
	3.2 Integrated Models

	4 The System Point of View
	4.1 Separate Models
	4.2 Integrated Models

	5 Application of the Framework
	5.1 Comparing the Classes
	5.2 Positioning Existing Approaches

	6 Conclusions and Outlook
	Acknowledgments.
	References

