Skip to main content

Natural Language Guided Dialogues for Accessing theWeb

  • Conference paper
  • First Online:
Text, Speech and Dialogue (TSD 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2448))

Included in the following conference series:

  • 576 Accesses

Abstract

This paper proposes the use of ontologies representing domain and linguistic knowledge for guiding natural language (NL) communication on theWeb contents. This proposal deals with the problem of obtaining and processing the Web data required to answer users queries. Concepts and communication acts are represented in a conceptual ontology (CO). Domain-restricted linguistic resources are obtained automatically by adapting the general linguistic knowledge to cover the communication acts for a particular domain. The use of domain-restricted grammars and lexicons has proved to be efficient, especially when the user is guided in introducing the sentences. To answer users queries the system fires the appropriate wrappers to extract the data from the Web. The CO provides a unifying framework to represent and process the knowledge obtained from the Web. Following this proposal, a dialogue-system for accessing a set of Web sites on the travelling domain in Spanish has been implemented.

Grup de recerca consolidat 2001 SGR 00254, supported by DURSI

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashish, N., Knoblock, C.A.: Wrapper generation for semistructured Internet sources. ACM SIGMOD Workshop on Managment of Semi-structured Data (1997).

    Google Scholar 

  2. Bateman, J.A., Kasper, R.T., Moore, J. D., Whitney, R. A.: A General Organization of Knowledge for Natural Language Processing: the Penman Upper Model. Technical report. USC/Information Sciences Institute (1990).

    Google Scholar 

  3. Cardie, C., Ng, V., Pierce, D., Buckley, C.: Examining the Role of Statistical and Linguistic Knowledge Sources in a General-Knowledge Question-Answering System. The Sixth Applied Natural Language Processing Conference (2000).

    Google Scholar 

  4. Cohen, W.: Recognizing Structure in Web Pages using Similarity Queries. AAAI (1999) 59–66.

    Google Scholar 

  5. Cohen, W.: Whirl: A word-based information representation language. Artificial Intelligence, 118, (2000) 163–196.

    Article  MATH  Google Scholar 

  6. Cohen, W., Jensen, L.S.: A structured wrapper induction system for extracting information from semi-structured documents. IJCAI Workshop on Adaptive Text Extraction and Mining (2001).

    Google Scholar 

  7. Eikvil, L.: Information Extraction from World Wide Web-A Survey. Report 945 (1999). ISBN 82-539-0429-0. Available at: http://www.nr.no/documents/samba/researchareas/BAMG/Publications/webIE/rep945.ps.

  8. Garcia-Molina, H., Papakonstantinou, D., Quass, A., Rajaraman, Y., Sagiv, Y., Ullman, J., Vassalos, V., Widom, J.: The TSIMMIS approach to mediation: Data models and languages. The journal of Intelligent Information Systems (1997).

    Google Scholar 

  9. Gatius, M., Rodríguez, H.: Adapting general linguistic knowledge to applications in order to obtain friendly and efficient NL interfaces. VEXTAL Conference (1999).

    Google Scholar 

  10. Gatius, M.: Using an ontology for guiding natural language interaction with knowledge based systems. Ph.D. thesis. Technical University of Catalonia (2001).

    Google Scholar 

  11. Hearst, M.A.: Information Integration Trends and Controversies. Column IEEE Intelligent Systems, 13 (1998) 17–20.

    Article  Google Scholar 

  12. Hsu, C., Dung, M.: Generating finite-state transducers for semistructured data extraction from the WEB. Journal of Information Systems, 23 (1998) 521–538.

    Article  Google Scholar 

  13. Kobayashi, M., Takeda, K.: Information Retrieval on the Web. Computing Surveys, 32 (2000).

    Google Scholar 

  14. Kushmerick, N.: Wrapper induction: Efficiency and expressiveness. Artificial Intelligence, 118 (2000) 15–68.

    Article  MathSciNet  MATH  Google Scholar 

  15. Levy, A.Y.: Combining Artificial Intelligence and Databases for Data Integration. Special issue of LNAI: Artificial Intelligence Today; Recent Trends and Developments (1999).

    Google Scholar 

  16. Maybury, M.: Intelligent Multimedia Interfaces. AAAI Press & Cambridge MA: The MIT Press, Menlo Park, CA (1993).

    Google Scholar 

  17. Muslea, I.: Extraction Patterns for Information Extraction Tasks: A Survey. AAAI Workshop on Machine Learning for Information Extraction (1999).

    Google Scholar 

  18. Muslea, I., Minton, S., Knoblock, C.: Hierarchical Wrapper Induction for Semistructured, Webbased Information Sources. Conference on Automated Learning and Discovery(CONALD) (1999).

    Google Scholar 

  19. The Penman NL Generation Group. The Nigel Manual. Information Sciences Institute of the University of Southern California. Draft (1988).

    Google Scholar 

  20. Voorhees, E. Overview of the TREC 2001 Question Answering Track. Presentation to the Text Retrieval Conference, USA (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gatius, M., Rodríguez, H. (2002). Natural Language Guided Dialogues for Accessing theWeb. In: Sojka, P., Kopeček, I., Pala, K. (eds) Text, Speech and Dialogue. TSD 2002. Lecture Notes in Computer Science(), vol 2448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46154-X_53

Download citation

  • DOI: https://doi.org/10.1007/3-540-46154-X_53

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44129-8

  • Online ISBN: 978-3-540-46154-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics