Abstract
Embryonics (embryonic electronics) is a research project that attempts to draw inspiration form the world of biology to design better digital computing machines, and notably massively parallel arrays of processors. In the course of the development of our project, we have realized that the use of programmable logic circuits (fid-programmable gate arrays, or FPGAs) is, if not indispensable, at least extremely useful. This article describes some of the peculiar features of the FPGA we designed to efficiently implement our embryonic machines. More particularly, we discuss the issues of memory storage and of self-repair, critical concerns for the implementation of our bio-inspired machines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barbieri, M.: The Organic Codes: The Basic Mechanism of Macroevolution. Rivista di Biologia / Biology Forum 91 (1998) 481–514.
Gilbert, S. F.: Developmental Biology. Sinauer Associates Inc., MA, 3rd ed. (1991).
Mange, D., Tomassini, M., eds.: Bio-inspired Computing Machines: Towards Novel Computational Architectures. Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland (1998).
Mange, D., Sanchez, E., Stauffer, A., Tempesti, G., Marchal, P., Piguet, C.: Embryonics: A New Methodology for Designing Field-Programmable Gate Arrays with Self-Repair and Self-Replicating Properties. IEEE Transactions on VLSI Systems 6(3) (1998) 387–399.
Negrini, R., Sami, M.G., Stefanelli, R.: Fault Tolerance Through Reconfiguration in VLSI and WSI Arrays. The MIT Press, Cambridge, MA (1989).
Ortega, C., Tyrrell, A.: Reliability Analysis in Self-Repairing Embryonic Systems. Proc. 1st NASA/DoD Workshop on Evolvable Hardware, Pasadena, CA (1999) 120–128.
Shibayama, A., Igura, H., Mizuno, M., Yamashina, M. An Autonomous Reconfigurable Cell Array for Fault-Tolerant LSIs. Proc. 44th IEEE International Solid-State Circuits Conference, San Francisco, California (1997) 230–231,462.
Sipper, M. Fifty Years of Research on Self-Replication: an Overview Artificial Life 4(3) (1998) 237–257.
Tempesti, G.: A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes Ph.D. Thesis No. 1827, EPFL, Lausanne (1998).
Tempesti, G., Mange, D., Stauffer, A.: Self-Replicating and Self-Repairing Multi-cellular Automata. Artificial Life 4(3) (1998) 259–282.
Wolfram, S.: Theory and Applications of Cellular Automata. World Scientific, Singapore (1986).
Wolpert, L.: The Triumph of the Embryo. Oxford University Press, NY (1991).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Prodan, L., Tempesti, G., Mange, D., Stauffer, A. (2000). Biology Meets Electronics: the Path to a Bio-Inspired FPGA. In: Miller, J., Thompson, A., Thomson, P., Fogarty, T.C. (eds) Evolvable Systems: From Biology to Hardware. ICES 2000. Lecture Notes in Computer Science, vol 1801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46406-9_19
Download citation
DOI: https://doi.org/10.1007/3-540-46406-9_19
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67338-5
Online ISBN: 978-3-540-46406-8
eBook Packages: Springer Book Archive