Skip to main content

Ant Colony System for the Design of Combinational Logic Circuits

  • Conference paper
  • First Online:
Evolvable Systems: From Biology to Hardware (ICES 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1801))

Included in the following conference series:

Abstract

In this paper we propose an application of the Ant System (AS) to optimize combinational logic circuits at the gate level. We define a measure of quality improvement in partially built circuits to compute the distances required by the AS and we consider as optimal those solutions that represent functional circuits with a minimum amount of gates. The proposed methodology is described together with some examples taken from the literature that illustrate the feasibility of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carlos A. Coello, Alan D. Christiansen, and Arturo Hernández Aguirre. Automated Design of Combinational Logic Circuits using Genetic Algorithms. In D. G. Smith, N. C. Steele, and R. F. Albrecht, editors, Proceedings of the International Conference on Artificial Neural Nets and Genetic Algorithms, pages 335–338. Springer-Verlag, University of East Anglia, England, April 1997.

    Google Scholar 

  2. Carlos A. Coello, Alan D. Christiansen, and Arturo Hernández Aguirre. Use of Evolutionary Techniques to Automate the Design of Combinational Circuits. International Journal of Smart Engineering System Design, 1999. (accepted for publication).

    Google Scholar 

  3. A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant colonies. In F. J. Varela and P. Bourgine, editors, Proceedings of the First European Conference on Artificial Life, pages 134–142. MIT Press, Cambridge, MA, 1992.

    Google Scholar 

  4. G. Di Caro and M. Dorigo. AntNet: Distributed Stigmergetic Control for Communications Networks. Journal of Artificial Intelligence Research, 9:317–365, 1998.

    MATH  Google Scholar 

  5. M. Dorigo and G. Di Caro. The Ant Colony Optimization Meta-Heuristic. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization. McGraw-Hill, 1999.

    Google Scholar 

  6. M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strategy. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1991.

    Google Scholar 

  7. Tsutomu Sasao, editor. Logic Synthesis and Optimization. Kluwer Academic Press, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coello Coello, C.A., Zavala, R.L.G., García, B.M., Aguirre, A.H. (2000). Ant Colony System for the Design of Combinational Logic Circuits. In: Miller, J., Thompson, A., Thomson, P., Fogarty, T.C. (eds) Evolvable Systems: From Biology to Hardware. ICES 2000. Lecture Notes in Computer Science, vol 1801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46406-9_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-46406-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67338-5

  • Online ISBN: 978-3-540-46406-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics