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Abstract. We provide a uniform framework for the analysis of programs
with procedures and explicit, unbounded, fork/join parallelism covering
not only bitvector problems like reaching definitions or live variables
but also non-bitvector problems like simple constant propagation. Due
to their structural similarity to the sequential case, the resulting algo-
rithms are as efficient as their widely accepted sequential counterparts,
and they can easily be integrated in existing program analysis environ-
ments like e.g. METAFRAME or PAG. We are therefore convinced that
our method will soon find its way into industrial-scale computer systems.

Keywords: Inter-procedural program analysis, explicit parallelism, bit-
vector problems, simple constant propagation, coincidence theorems.

1 Introduction

The analysis of parallel programs is known as a notoriously hard problem. Even
without procedures and with only bounded parallelism the analysis typically suf-
fers from the so-called state explosion problem: in general, already the required
control structures grow exponentially with the number of parallel components.
Bitvector analyses, dominant in most practical compilers, escape this problem
in the context of fork/join-parallelism [IT}[9]: a simple pre-process is sufficient to
adapt sequential intra-procedural bitvector analyses to directly work on parallel
flow graphs which concisely and explicitly represent the program’s parallelism.
Key for this adaptation was to change from a property analysis (directly associa-
ting program points with properties) to an effect analysi associating program
points with a property transformer resembling the effect of the ‘preceding’ pro-
gram fragment. The simplicity of the adaption results from the fact that bitvector
analyses can conceptually be “sliced” into separate analyses for each individual
bit-component each of which only requires the consideration of a three-point
transformer domain.

In order to handle also procedures and unbounded parallelism, Esparza and
Knoop observed that the described problem profile also admits an automata

! Second-order analysis in the terminology of [11].
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theoretic treatment [5]. This observation has been carefully developed by Esparza
and Podelski in [6]. The resulting algorithm requires involved concepts, like e.g.
tree automata, and, from a program analyzer’s perspective, the results are rather
indirect: the reachability analysis computes regular sets characterizing the set of
states satisfying a particular property. More precisely, the algorithm treats each
bit-component of the analysis separately. For each such component an automata
construction is required which is linear in the product of the size of the program
and the size of an automaton describing reachable configurations. The latter
automaton can grow linearly in the size of the program as well — implying that
the analysis of each component is at least quadratic in the program size.

In this paper we present a much more direct framework for the inter-procedural
analysis of fork/join parallel programs. We propose a constraint-based approach
which naturally arises from an algebraic reformulation of the intra-procedural
method presented in [I1),[9]. Our approach closely resembles the classical under-
standing of bitvector analysis, has a complexity which is linear in the program
size and admits elegant, algebraic proofs. Summarizing, we contribute to the
state of the art by

1. Providing a uniform characterization of the captured analysis profile which
simultaneously addresses all involved program entities, e.g., all program va-
riables at once for live variable analysis or all program expressions at once for
availability of expressions. Moreover, this profile goes beyond pure bitvector
analyses as it e.g. also captures simple constant propagation [9].

2. Basing our development on a constraint characterization of valid parallel
execution paths: the constraint system for the actual analyses simply results
from an abstract interpretation [3l, 4 2] of this characterization.

3. Presenting a framework which supports algebraic reasoning. E.g., the proof
for proposition 2(3) — resembling the central Main Lemma of [I1] — straight-
forwardly evolves from our profile characterization.

4. Guaranteeing essentially the same performance as for purely inter-procedural
bitvector analyses by exploiting the results of a generalized possible interfe-
rence analysis [L1].

As a consequence, the presented framework is tightly tailored for the intended
application area. It directly associates the program points with the required
information based on classical constraint solving through (e.g., worklist based)
fixpoint iteration. This can be exploited to obtain simple implementations in
current program analysis generators like DFA& OPT METAFRAME [1(] or PAG
[1], which provide all the required fixpoint iteration machinery.

The paper is organized as follows. After formally introducing explicitly parallel
programs with procedures in section Pl we define the notion of parallel execution
paths in section Bl and specify our analysis problem in section H. Section [l
then presents a precise effect analysis for procedures, which is the basis for the
precise inter-procedural reachability analysis given in section B Finally, section
[7l discusses possible extensions of our formal development, while section [§ gives
our conclusions and perspectives.
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2 Programs as Control-Flow Graphs

We assume that programs are given as (annotated) control-flow graphs (cfg’s for
short). An edge in the cfg either is a call of a single procedure, a parallel call to
two procedures, or a basic computation step. An example of such a cfg is given in
figure[Il There, we only visualized the annotation of call and parallel call edges.
Observe that this cfg indeed introduces an unbounded number of instances of
procedure g running in parallel.

- (4)
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©

Fig. 1. An Example Control-flow Graph.

Formally, a control-flow graph G for a program with procedures and explicit
parallelism consists of a finite set Proc of procedures together with a collection
Gp,p € Proc, of disjoint intra-procedural control-flow graphs. We assume that
there is one special procedure main with which program execution starts. The
intra-procedural control-flow graph G, of a procedure p consists of:

— A set N, of program points;

— A special entry point s € Ny, as well as a special return point r € Ny;

— A set of edges E, C N, X Np;

— A subset C, C E, of call edges where for e € (), calle = p denotes that
edge e calls the procedure p; and finally,

— A subset P, C E, of parallel call edges where for e € P,, calle = p1 || p2
denotes that edge e calls the procedures p; and po in parallel.

Edges which are not contained in C), or P, are also called basic edges.

Practical Remark: It is just for convenience that we allow only binary par-
allelism in our programs. Our methods can be easily adapted to work also for
more procedures being called in parallel or even parallel do-loops.

Also note that we do not consider synchronization between parallel threads by
barriers or semaphores. Such constructs limit the amount of possible execution
paths. By ignoring these, we may get more possible execution paths and thus
(perhaps less precise but) still safe analysis results.

3 Parallel Execution Paths

The semantics of a parallel program is determined w.r.t. the set of parallel exe-
cution paths. What we are now going to formalize is an interleaving semantics
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for parallely executable threads. We need the following auxiliary definitions.
Let E denote a finite set of edges. Let w = e;...e, be a word from E* and
I ={i <...<ir} C{l,...,n} be a subset of positions in w. Then the
restriction of w to I is given by w|r =e;, ... €, .

The interleaving of subsets My, My C E* is defined by

Mi@My={wePE |31 +L={1,...,|w|}:w €M and w|;, € Ma}

Here, “4” denotes disjoint union of sets. Thus, M; ® Ms consists of all possible
interleavings of sequences from M; and M. Furthermore for M C E*| let pre(M)
denote the set of all prefixes of words in M, i.e.,

pre(M)={ue E*|weE :uve M}
We consider the following sets of possible execution paths:

— For p € Proc, the set II(p) of all execution paths for p;

— For program point v of procedure p, the set IT(v) of all paths starting at the
entry point of p and reaching v on the same level (see below);

— For every procedure p, the set IT,.(p) of all paths starting at from a call of
main and reaching some call of p;

— For every program point v, the set II,.(v) of all paths starting at from a call
of main and reaching program point v.

These sets are given through the least solutions of the following constraint sy-
stems (whose variables for simplicity are denoted by II(p), II(v), II.(p), II.(v) as
well). Let us start with the defining constraint system for the sets of same-level
execution paths.

II(p) D II(r) r return point of p (1)
II(s) 2 {e} s entry point of a procedure (2)
(v) 2 I(u) - {e} e = (u,v) basic edge (3)
I(v) 2 H(u) - II(p) e = (u,v) calls p (4)
I (v) 2 H(u) - (I(p1) ® I (p2)) €= (u,v) calls p1 || p2 (5)

Lines (1) through (4) are the standard lines to determine the sets of all same-level
execution paths as known from inter-procedural analysis of sequential programs.
Line (1) says that the set of execution paths of procedure p is the set of same-level
paths reaching the return point of p. Line (2) says that at least € is a same-level
execution path that reaches the entry point of a procedure. Line (3) says that
for every basic edge e = (u,v), the set of same-level execution paths reaching
the program point v subsumes all same-level execution paths to u extended by
e. Line (4) says that for every edge e = (u,v) calling a procedure p, the set
of same-level execution paths reaching the program point v subsumes all same-
level execution paths reaching u extended by any execution path through the
procedure p. Line (5) for a parallel call of p; || p2 has the same form as line (4).
But now the same-level execution paths to the program point before the call are
extended by all interleavings of execution paths for p; and ps.
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In order to specify the sets IT.(p), IT.(v), let us introduce the auxiliary sets
II(v,p), v a program point, p a procedure, which give the sets of execution
paths reaching v from a call of p. These auxiliary sets are defined as the least
solution of the following system of constraints:

I (v,q) D II(v) v program point of procedure ¢ (1)
(v,q) 2 II(u) - II(v,p) e=(u,-) calls pin g (2)
1 (v, q) 2 1(u) - (I (v,pi) @ M) e = (u,.) calls p1 || p2 in ¢ 3)

where M in line (3) is given by M = pre(I1(p3—;)). The intuition behind this
definition is as follows. Line (1) says that whenever v is a program point of
procedure ¢, then the set of execution paths from ¢ to v subsumes all same-
level execution paths from ¢ to v. Line (2) says that whenever at some edge
e = (u,-) in the body of procedure ¢, some procedure p is called, then the
set of execution paths from ¢ to v subsumes all computation paths consisting
of a same-level execution path from ¢ to the program point u followed by an
execution path from p to v. Finally, line (3) considers an edge e = (u,_) in the
body of ¢ which is a parallel call of p; and ps. Then we have to append to the
same-level execution paths to u all interleavings of execution paths from p; to v
with prefixes of same-level execution paths for the parallel procedure.

Given the IT(v, q), we define the values IT,.(v), IT.(p) as the least solution of:

II.(v) 2 II(v,main) v a program point
(p) 2 Io(w)  edge (u, ) calls p, p||- or _||p

For now, let us assume that all the sets of execution paths IT(v), IT.(v), I1(p), I (p)
are non-empty. In section [ we will explain how this assumption can be removed.

4 Semantics

Let D denote a complete lattice and F C D — D a subset of monotonic functions
from D to D which contains Az.L (the constant L-function) and I = Az.z (the
identity) and is closed under composition “o” and least upper bounds. While D
is meant to specify the set of abstract properties, F describes all possible ways
how properties may be transformed when passing from one program point to

the other. In this paper we make the following additional assumption:

— D is distributive, i.e., aJ (bMc¢) = (aMb) U (aMc) holds for all a,b, c € D;

— D has height h < o0, i.e., every ascending chain of elements in D has length
at most h + 1;

— set F counsists of all functions of the form fz = (aMx)Ub with a,b € D.

Since D is distributive, all functions f in F are distributive as well, i.e., f (alb) =
(fa)U(fb) for all a,b € D. Let us also mention that neither D nor FF is demanded
to be finite. However, since D has height h, the lattice F has height at most 2h.
The most prominent class of problems that satisfy our restrictions are bitvector
problems like available expressions, reaching definitions, life variables or very
busy expressions [7]. In these cases, we may choose D = B" where B = {0 C 1}.
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There are, however, further analysis problems which meet our assumptions with-
out being bitvector problems. This is the case, e.g., for simple constant propa-
gation. Simple constant propagation tries to determine whether or not some
constant has been assigned to a variable which later-on remains unchanged. For
this application, we may choose D = V — B where V is the set of program
variables and B is the flat lattice of possible values for program variables. Thus,
an abstract value d € D represents an assignment of variables to values. In par-
ticular, D has height h = 2 - #V. Note furthermore that for simple constant
propagation, all functions f € F are of the special form f = \zx.(aMz) LU b with
a € {1, T}. Thus, ascending chains of functions have length at most 3 - #V.
Let E denote a set of edges and [.] : E — F denote an assignment of functions
to edges. Then we extend [.] to sequences w = e ...e, € E* and sets M C E*
in the natural way, i.e., by

[w] = [en] 0. o ed] [(M] = | {[w] [ w e M}

Thus, especially, [}] = Az.L (the least element in F), and [{e}] = [¢] = I.
Functions [w] and [M] are also called the effect of the sequence w and the set
M, respectively.

For the rest of this paper we assume that we are given an assignment

le] = fe=Ax.(ac.MNz)Ub. €F

to each basic edge e of our input program. Then program analysis tries to com-
pute (approximations to) the following values:

Effects of Procedures: For each procedure p, Effect(p) := [II(p)] denotes the
effect of the set of all same-level execution paths through p;

Reachability: For a start value dy € I, program point v and procedure p,
Reach(v) := [II,(v)] do and Reach(p) := [II,(p)] do denote the least upper
bounds on all abstract values reaching v along execution paths from main
and the least upper bound on all abstract values reaching calls to p, respec-
tively.

The system of these values is called the Merge-Over-all-Paths solution (abbrevia-
ted: MOP solution) of the analysis problem. Since the respective sets of execution
paths are typically infinite, it is not clear whether this solution can be computed
effectively. The standard approach proposed in data-flow analysis and abstract
interpretation [3][4, 2] consists in putting up a set C of constraints on the values
we are interested in. The constraints are chosen in such a way that any solution
to C is guaranteed to represent a safe approximation of the values. Quite fre-
quently, however, the least solution of C equals the MOP solution [8] [I3]. Then
we speak of coincidence of the solutions, meaning that C precisely characterizes
the MOP.

In our present application, we are already given a constraint system whose least
solution represents the sets of execution paths which are to be evaluated. By
inspecting this constraint system, we would naturally try to obtain constraint
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systems for effect analysis and reachability just by abstracting the lattice of sets
of paths with our lattice F. Thus, the ordering “C” of set inclusion on sets of
paths is mapped to the ordering on F; set union and concatenation is mapped
to least upper bounds and composition of functions. Indeed, this abstraction
mapping [.] has the following properties:

Proposition 1. Let My, My C E*. Then the following holds:

1. [My U Msy] = [My] U [My);
2. [My - M) = [Ms] o [M4] if both My and My are non-empty. O

Proposition [l suggests a direct translation of the constraint system for the sets
of execution paths into a constraint system which we are aiming at. The only
two obstacles withstanding a direct translation are (1) an abstract interleaving
operator (which for simplicity is denoted by “®” as well), and (2) a way how
to deal with prefixes. For our abstract lattices, these two problems turn out to
have surprisingly simple solutions.

For f; = Ax.(a; M) U by, i = 1,2, we define the interleaving of f; and fo by:

f1® fo=Az.(a1 MaxMx) U by Ubs

We have:
Proposition 2. Let f1, fo, f € F. Then the following holds:

1. fi®fa=fiofolfao fi;
2. (hUf)ef=HAfUfef;
3. [M1 ® Ms] = [M;] ® [Ma] for non-empty subsets My, My C E*.

For a proof of Proposition[2 see appendix[Al Let us now consider the set pre(M)
of prefixes of a non-empty set M C E*. Then the following holds:

Proposition 3. Let Ey; denote the edges occurring in elements of M where for
e € Ey, le] = Ax.(ae Mx) Ub.. Then

[pre(M)] = Ax.x U B where B=|Hbe|e€ En} O

Thus, all the intersections with the a. have disappeared. What only remains is
the least upper bound on the values b,.

5 Effect Analysis

Now we have all prerequisites together to present a constraint system for ef-
fect analysis. The least solution of the constraint system defines values [p] for
the effect of procedures p together with values [v] for the effects of same-level
execution paths reaching program point v.

[p] 3 [r] r return point of p (1)
[s] 3T s entry point (2)
[v] 3 fe o [u] e = (u,v) basic edge (3)
[v] 3 [p] o [u] e = (u,v) calls p (4)
[l D (] @[p2]) o [u] €= (u,0) calls pr|[p2 (5)
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Lines (1) through (4) are the lines to determine the effects of procedures as
known from inter-procedural analysis of sequential programs. Line (1) says that
the effect of procedure p is the effect of what has been accumulated for the
return point of p. Line (2) says that accumulation of effects starts at entry
points of procedures with the identity function I = Az.z. Line (3) says that the
contribution of a basic edge e = (u,v) to the value for v is given by the value
for u extended by the application of the function f. associated with this edge.
Line (4) says that the contribution of an edge e = (u,v) calling a procedure p is
determined analogously with the only difference that the function f. in line (3) is
now replaced with the effect [p] of the called procedure. Also line (5) for a parallel
call has the same form. But now, in order to determine the combined effect of
the parallely executed procedures p; and ps, we rely on the interleaving operator
“®”. This constraint system for effect analysis is the direct abstraction of the
corresponding constraint system for same-level reaching paths from section Bl
Therefore, we obtain (by distributivity of all involved operators):

Theorem 1. The least solution of the effect constraint system precisely descri-
bes the effect of procedures, i.e.,

Effect(p) = [p] and Effect(v) = [v]

for every procedure p and program point v. These values can be computed in time
O(h - n) where n is the size of the program. O

6 A Constraint System for Reachability

As for effect analysis, we could mimic the least fixpoint definition of the sets
of reaching execution paths through a corresponding constraint system over F.
Observe, however, that our defining constraint system for reaching execution
paths in section Bl has quadratic size. Clearly, we would like to improve on this,
and indeed this is possible — even without sacrificing precision.

Instead of accumulating effects in a topdown fashion as was necessary in the pre-
cise definition of reaching execution paths, we prefer a bottom-up accumulation
— a strategy which is commonly used in inter-procedural analysis of sequential
programs. There, accumulation directly starts at the main program and then
successively proceeds to called procedures.

For each program point v, let B(v) denote the least upper bound of all b, for
all basic edges e possibly executed in parallel with v. This value is also called
possible interference of v. Formally, these values are determined through the
least solution of the following constraint system:

S
o

e basic edge in procedure p
procedure p calls g or g|| - or _||¢
v program point in p

(u,_) calls procedure p

(g3—i) U B(u) (u,-) calls q1 || g2
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We used auxiliary values o(p), p a procedure, to calculate the least upper bound
on b, for all basic edges possibly executed during evaluation of p. The whole
system for computing the values o(p), B(p) and B(v) is of linear size and uses
“U” as only operation in right-hand sides. Such kind of problems are also known
as “pure merge problems” and can be solved even in linear time.

We will now construct a constraint system as for inter-procedural reachability
analysis of sequential programs, but for each program point additionally take its
possible interference into account. Thus, we consider the values [v], v a program
point, [p], p a procedure, which are determined as the least solution of the
following constraint system:

[main] 3 do (1)
[v] 2 B(v) and (2)
[v] 32 [v][p] v program point in procedure p (3)
[p]  2[ul e=(u-)callsporpl-or_|[p (4

Only line (2) makes the difference to a corresponding constraint system for
reachability in sequential programs. The intuition behind the constraint system
is as follows. Line (1) says that initially the value reaching main should subsume
the initial value dy. Line (2) says that the value reaching program point v should
subsume its possible interference. Line (3) says that when v is a program point
of procedure p, then the reaching value should also subsume the intra-procedural
effect of v applied to the value reaching p. Line (4) finally says that the value
reaching a procedure should subsume the value of every program point where
such a call (possibly in parallel to another call) is possible.

This constraint system differs considerably from the constraint system for the
sets of reaching execution paths. Nonetheless, we are able to prove:

Theorem 2. The above constraint system computes precise reachability infor-
mation as well, i.e.,

Reach(p) = [p] and Reach(v) = [v]

for all program points v and procedures p. These values can be computed in time
O(h - n) where n is the size of the program.

For a proof see appendix [Bl Theorem Rlimplies that programs with procedures
and parallelism are not harder to analyze than programs with procedures but
without parallelism!

7 Extensions

In this section, we discuss issues which are important for the practical applica-
bility of the presented results. We do not claim that this section contains any
new ideas or constructions. Rather we want to emphasize that the construc-
tions known from the inter-procedural analysis of sequential programs can be
extended to parallel programs in a straight-forward way.
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7.1 Non-reachable Program Points

So far, we assumed that every program point is reachable by at least one execu-
tion path. In order to show that this assumption is not vital, let P and R denote
the sets of possibly terminating procedures and reachable program points, re-
spectively. In order to compute these sets, we instantiate our generic analysis
with D = {0 C 1} where for each basic edge e, the function [e] = f. is given
by fe = I = Az.x, and the initial value dy equals 1. The only functions from
D — D occurring during the analysis are Az.L and I. Both functions are strict,
i.e., map L to L. Therefore, we obtain:

Proposition 4. For every procedure p and program point v, the following holds:

1. [o] =1 iff II(v) # 0 and [p] = I iff II(p) # 0;
2. [l =1 4f II,(v) # 0 and [p] =1 ff IL.(p) # 0.

In particular, p € P iff [p] = I, and v € R iff [v] = 1. |
We conclude that the sets P and R can be computed in linear time.

A non-reachable program point should not influence any other program point.
Therefore, we modify the given cfg by removing all edges starting in program
points not in R. By this edge removal, the sets of reaching execution paths have
not changed. Let us call the resulting cfg normalized. Then we obtain:

Theorem 3. Assume the cfg is normalized. Then for every program point v and
procedure p,

1. Effect(v) = [v] and Effect(p) = [p];
2. Reach(v) = [v] and Reach(p) = [p]. O

We conclude that, after the preprocessing step of normalization, our constraint
systems will compute a safe approximation which is precise.

Practical Remark: Normalization of the cfg may remove edges and thus some
constraints from the constraint systems of the analysis. Therefore, omitting nor-
malization may result in a less precise, but still safe analysis.

7.2 Backward Analysis

What we discussed so far, is called forward analysis. Examples of forward ana-
lysis problems are reaching definitions, available expressions or simple constant
propagation. Other important analyses, however, determine the value at a pro-
gram point v w.r.t. the possible future of v, i.e., the set of reverses of execution
paths possibly following a visit of v. Examples are live variables or very busy
expressions. Such analyses are called backward analyses. In case that every for-
ward reachable program point is also backward reachable, i.e., lies on an exe-
cution path from the start point to the return point of main, we can reduce
backward analysis to forward analysis — simply by normalizing the cfg followed
by a reversal of edge orientations and an exchange of entry and return points of
procedures.
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7.3 Local and Global State

Consider an edge e = (u,v) in the cfg which calls a terminating procedure p
(the treatment of a terminating parallel call to two procedures p; and py is
completely analogous). So far, the complete information at program point u is
passed to the entry point of p. Indeed, this is adequate when analyzing global
properties like availability of expressions which depend on global variables only.
It is not (immediately) applicable in presence of local variables which are visible
to the caller but should be hidden from the callee p, meaning that they should
survive the call unchanged [8] [[3].

To make things precise, let us assume that D = ID; xID, where ID; and D, describe
local and global properties, respectively. Let us further assume that the global
part of the current state is passed as a parameter to p, and also returned as the
result of the call, whereas the local part of the program point before the call is
by-passed the call using some transformer 3, : D; — D;. Recall that every f € F
is of the form f = Az.(xMa) Ub with a,b € D. Since D is a Cartesian product,
this implies that f = f; x f; where f; : Iy = ; and f,; : Dy — Dy independently
operate on the local states and global states, respectively.

Therefore, we can separate the analysis into two phases.

The first phase considers just global values from D,. No local state need to be
preserved during the call, and we use the original call edge.

The second phase then is purely intra-procedural and deals with the lattice ;.
But now, since the call at edge e has no effect onto the local state, we simply
change e into a basic edge with [e] = fe.

8 Conclusion and Perspectives

We have shown how to extend the intra-procedural method of [L1] to uniformly
and efficiently capture inter-procedural bitvector analyses of fork/join parallel
programs. Our method, which comprises analysis problems like available expres-
sions, live variables or simple constant propagation, passes the test for prac-
ticality, as it ‘behaves’ as the widely accepted algorithms for sequential inter-
procedural program analysis. Moreover, even though precision can only be pro-
ved for fork/join parallelism, our algorithm may also be used for computing safe
approximations for languages with arbitrary synchronization statements. Finally,
due to its structural similarity to the sequential case, it can easily be integrated
in program analysis environments like e.g. METAFRAME or PAG, which already
contain the necessary fixpoint machinery.

As a next step, we plan a closer comparison with the automata theoretic ap-
proach of Esparza and Podelski. The considered program structures are obviously
similar, however, the range of possible analyses may be different. As shown in
[12], the automata theoretic approach is able to capture the model checking pro-
blem for all of the linear time temporal logic EF. It would be interesting to see
whether it is possible to adopt our technique to covering this logic as well, or
whether the automata theoretic approach, which is significantly more complex
already for the analysis problem considered here, is inherently more powerful.
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Proof of Proposition [2]

We only prove statement (3). Let M7, M be non-empty subsets of E*. By sta-
tement (1), we have

[Mi] @ [Ma] = [Mi] o [M2] L [M2] o [M;]
:[MQ'MlLJMl'Mg] E[M1®M2]

Therefore, it remains to prove the reverse inequality. For that consider w =

€1..

.em € M; ® Ms where for disjoint index sets I, o with 1 UIs = {1,...,m},

w; = w|;, € M;. We claim:

[w] T [w1] o [we] U [wa] o [w1]
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Clearly, this claim implies the statement (3) of our proposition. In order to prove
the claim, let [e;] = Az.(a;Mz)Ub;, i = 1,...,m, [w;] = Az.(A4;Nz)UB,, j = 1,2,
and [w] = Az.(AMx) U B. Then by definition,

A:all_l...l_lam:AllTAg

Now consider value B. By definition,

B=||(xMarain...Mam)
k=1

We will show that for every k,
by Mag41M...May, E By U By
W.l.o.g. assume that k € I; (the case where k € I5 is completely analogous) and
let {j1,...,4r} ={j €l |j>k} Then
brMagiM...MNapy EbyMay, MN...MNa;. & By

which implies the assertion. a

B Proof of Theorem

Let us start with the following simple but useful observation:
Proposition 5. For every f € F, be D and A = Ax.x b,

fRA=Aof O

Next, we reformulate the constraint system for reachability as follows. We in-
troduce the new values [v]’, v a program point, and [p]’, p a procedure, which
collect the least upper bounds of directly reaching values by ignoring possible in-
terleavings with execution paths possibly executed in parallel to v (or p). These
values are determined as the least solution of the following constraint system:

[main]’ J do (1)
[v]' ZJ[v]o[p]’ v program point in procedure p (2)
[Pl 2wl e=(u,)callsporpll_or_|[p  (3)

By standard fixpoint induction we find:
Proposition 6. For all program points v and procedures p,

[vl =)' uB(v)  and  [p] = [p]" U B(p) 0
In order to understand the “nature” of the values B(v), we consider the sets

P(v) of edges possibly executed in parallel with program points v. They are
determined through the least solution of the following constraint system:

E(p) 2{e} e basic edge in procedure p

E(p) 2 E(q) procedure p calls g or ¢|| - or _|| ¢
P(v) 2 P(p) v program point in p

P(p) 2 P(u) (u, ) calls procedure p

P(gi) 2 E(gs—i) U P(u)  (u,-) calls g1 | g2
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By comparison of this constraint system with the definition of the values o(p)
and B(v), B(p) in section Bl we obtain:

Proposition 7. For every procedure p and program point v,

1. x.xUo(p) =IU[E(p);
2. Mx.xUB(p) =1U[P(p)] and Az.xUB(v)=1U][P()]. O

Moreover, we have:

Proposition 8. For every procedure p,

[pre(11(p))] = I U[E(p)] = Az.x U o(p) O

In order to simplify the proof of theorem[2] let us assume that all calls are parallel
calls ¢1 || g2. This assumption does not incur a restriction, since an ordinary call
to a procedure p can easily be simulated by a call to p || go where ¢q is a procedure
with just a single program point and no edges at all. Furthermore, it suffices to
prove the assertion of the theorem just for program points v (the assertion for
procedures then is an immediate consequence). We want to prove that for every
program point v, the value [v] is a safe approximation of the value Reach(v),
i.e., [v] 3 Reach(v). By definition,

Reach(v) = [II.(v)] dg = [II(v, main)] dgy

Therefore, let w € II(v, main). Then there are program points ug, . .., Uy, €xe-

cution paths wy, ..., w,, together with execution paths w}, procedures qii), qéi)

and indices j(i) € {1,2} for i = 1,...,m such that:
— Uy = ;
fwiéﬂ(ul)forsz m'
— there are calls (u;_1, ) to ¢ (@) || q
o . . . N OB
ug is a program point in main and for i >0, u; is a program point in ¢;;;
- wj € pre(U(qg )](Z))) fori=1,...,m;

—w e {wo} - ({wr} @ ({wi}- (. Awn, 1} © (w1} (wn} @ {wm}))..))).
Let A = Az.z U P(v). Then by proposition [,

[w]] £ [pre(1T(q5” ;)] = TU[E(g” ;)] E TU[P(v)] = A

for all i = 1,..., m. Therefore by proposition [5]

[w] © (- - ([wm] @ [w},]) © [wimn- 1])®[ m—1]---) o [wi]) @ [wh]) o [wo]
C (- (fwm] @ A) o [wn1]) @ A...) o [wr]) @ A) o [w]
= 45 o) & 8) o o & A7) oo o]
= A o [wim] © [wm—1] o ... o [wo]

Since ([wy,] o ... 0 [wg]) do C [v]’, we conclude that

[w]do E Av] = [v]" U B(v) = [v]
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which we wanted to prove.
It remains to prove the reverse inequality, i.e., that (1) [v]’ C Reach(v) and (2)
B(v) C Reach(v).
Let us first consider inequality (1). The value [v]’ is the least upper bound on
values [w]dy such that there exit program points uo, ..., um,, execution paths
wo, . .., Wy, together with procedures qu), qg) and indices j(i) € {1,2} for i =
1,...,m such that:
- Um = U
— w; € II(u;) for i =0,...,m;
— there are calls (u;—1,_) to qu’) I qéi);
— wugp is a program point in main and for ¢ > 0, u; is a program point in qj(.i)i);
— W =wWy...Wn-

By induction on r =m — 4 (from r =0 to r = m — 1), we find that for i > 0,
) O]
Wi ... Wy, € H(v,qj(i))
and for i = 0,
w=wp... W, € M(v,main) = I1,.(v)
Therefore,
[w] dg C [II-(v)] dy = Reach(v)
which we wanted to prove.
Now let us consider inequality (2). By proposition [[l Az.z U B(v) = I U [P(v)].
Therefore, it suffices to prove for each edge e € P(v), that b, C Reach(v).

Since e € P(v), there exist program points ug, . . . , U, execution paths wo, . . . , Wi,
together with procedures qY), qu), indices j(i) € {1,2} fori =1,...,m, an index
ke {1,...,m} and one execution path w’ such that

- Um = V;

— w; € I(u;) for i =0,...,m; _

— there are calls (u;—1,-) to qu) Il qg);

o . : . . @)
ug is a program point in main and for i > 0, u; is a program point in ¢

k
—w'e € pre(H(qé_)j(k)).

As above, we conclude that wy, . .. w,, € II(v, qﬂ%) By definition, then also

Wr_1W - . . wpw'e € I (v, qj(](ck_ji))

(where in case k = 1, we let q(.o)

o) = main) and therefore also

Wo - W W - .. wpw'e € IT(v, main) = II,.(v)
We conclude that
be E be U (ae M ([wo - .. wpw'] do)) = [wo - .. wpw'e] do E [,-(v)] do = Reach(v)

which completes the proof. a
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