A Case Study on Using Automata in Control
Synthesis

Thomas Hune and Anders Sandholm

BRICS*, Department of Computer Science
University of Aarhus, Denmark
{baris,sandholm}@brics.dk

Abstract. We study a method for synthesizing control programs. The
method merges an existing control program with a control automaton.
We have used monadic second order logic over strings to specify the
control automata. Specifications are translated into automata by the
Mona tool. This yields a new control program restricting the behavior
of the old control program such that the specifications are satisfied. The
method is presented through a concrete example.

1 Introduction

In the following we will describe some practical experience on synthesizing pro-
grams for the LEGOO RCXO system. The synthesis is based partly on an exist-
ing simple program and partly on an automaton generated by the tool Mona [7].

Writing control programs can often be an error prone task, especially if a
number of special cases must be taken into account. Time is often spent on
handling special case or failure situations rather than solving the actual problem
at hand. A number of different methods and tools have been developed to ease
this task. One well known method is based on a control automaton running in
parallel with the actual program [I2] [I3]. The automaton controls the input and
output events of the program. This is a way of restricting the sequences of 1/O
actions occurring.

The automata controlling the I/O actions can be specified in different ways,
e.g. by specifying it directly in some suitable notation, or by a logical formula.
We have chosen the latter approach. There are various logics which could be used
as specification language. We have chosen to use monadic second order logic over
strings (M2L) [2] for a number of reasons. First of all M2L has a number of nice
properties such as being expressive and succinct. For instance, having second
order quantification M2L is more expressive than LTL. Furthermore, there are
succinct M2L-formulae of size n which have minimal corresponding automata
of non-elementary size. Secondly, the tool Mona [7] implements a translation
from M2L formulae to minimal deterministic automata (MDFA) accepting the
language specified by the formula. The automata generated do not contain any

* Basic Research in Computer Science,
Center of the Danish National Research Foundation.

T. Maibaum (Ed.): FASE 2000, LNCS 1783, pp. 3493621 2000.
© Springer-Verlag Berlin Heidelberg 2000

350 Thomas Hune and Anders Sandholm

acceptance condition for infinite executions so we will only be considering safety
properties.

The method we study here is a variation of classical synthesis as described
in e.g. [10] 2], in that the method is partly based on an existing control pro-
gram. The aim of the synthesis described here is to restrict the behavior of an
existing (hopefully very simple) control program such that it satisfies certain
given properties. The executions of the existing control program are restricted
by the control automaton having I/O events as alphabet. These events define
the interface between the existing control program and the specification.

For studying the method we will look at a control program for a moving crane.
We have implemented the method for this example in the LEGOO RCXO sys-
tem [9]. Using the LEGOO RCXO system is interesting for at least two reasons.
First of all the environment of the RCXO system and especially the program-
ming language is quite restricted, so it is not obvious that implementing the
method is feasible at all. Secondly, using the LEGOO RCXDO system one can
build actual physical systems for testing the control programs. We have built
the crane and used it with different control programs.

The language running on the LEGOO RCXO brick (RCXO language) is an
assembly-like language with a few high level features, like a notion of task or
process. Programs are written on a PC and downloaded to the RCXO brick
where they are interpreted.

1.1 Related Work

The use of finite state automata for controlling systems is not novel. Ramadge
and Wonham [12] give a survey of classic results.

The method used in this paper has been used successfully in <bigwig> [13],
a tool for specifying and generating interactive Web services. Our method for
control synthesis is used as an integral part of <bigwig> to define safety con-
straints. In fact, via use of a powerful macro mechanism [T] the method has been
used to extend the Web programming language in <bigwig> with concepts and
primitives for concurrency control, such as, semaphores and monitors.

1.2 Outline of the Paper

In the following section we will outline the method. A short presentation of the
LEGOU system is given in Section B In Section[dthe crane example is presented.
The logic-based specification language is presented in Section Bl and the merge
of automata with the RCXO code in Section [6l Finally, Section [flrounds off with
conclusions, and suggestions for future work.

2 Outline of the Method

The two main components of the synthesis is a basic control program and an
automaton. From these two components we generate a control program which

A Case Study on Using Automata in Control Synthesis 351

is ready for use. We do not have any special requirements to what a control
program is, like no side effects, since in our case the control program is the only
program running on the RCXO brick. The interface between the two components
is a predefined set of I/O actions. This will typically be all commands in the
program for reading sensors or manipulating actuators.

Given a basic control program and an implementation of the automaton we
merge these. Each instruction in the basic control program using one of the 1/0
actions is transformed to a sequence of instructions first calling the automaton
and based on the response from the automaton performing the action or not.
Section will discuss different approaches to what should happen, when a
given action is not allowed by the automaton.

Since the automaton is invoked only when the basic control program is about
to make an I/O action, it can only restrict the possible I/O behaviors of the
control program, not add new I/O actions. Only looking at sequences of 1/0O
actions the basic control program must therefore be able to generate all se-
quences present in the solution. Since the automaton will prune away unwanted
sequences, the basic control program might also generate unwanted sequences.
The basic control program should not implement any kind of priority scheme,
unless one is sure that combining this with the safety specification will not lead
to deadlocks.

The hope is that writing such basic control programs should be a simple task.
In general the basic control program could be one always being able to read any
sensor and give any command to the actuators. This amounts to generating the
star operation of the input alphabet. However, there will often be a correspon-
dence between input and output which it would be natural to have in a basic
the control program. This is the case in the example shown later.

One could see the basic control program as implementing the method for
controlling the sequences of I/O actions and the automaton defining the allowed
policy for these. This suggests that with one implementation of a basic control
program it is possible to test different specifications or strategies (policies) only
by changing the control automaton. Therefore, a fast (automatic) way of getting
an implementation of an automaton from a specification and merging this with
the control program allows for testing different specifications fast.

3 The LEGOD System

The studies we have conducted are based on the LEGOO RCXO system and the
associated RCXO language. The language is an assembly like language with some
high level concepts like concurrent tasks. The language is restricted in a number
of ways, e.g. it is possible to address only 32 integer variables and allows only ten
tasks in a program. Furthermore, one cannot use symbolic names in programs.
However, we have not encountered problems with the mentioned restrictions
during our experiments.

A small operating system is running on the RCX0O with processes for handling
I/0 and one process running an interpreter for the RCX0O language. The RCXO

352 Thomas Hune and Anders Sandholm

brick has three output ports (for motors and lights) and three input ports. Four
kinds of sensors for the input ports are supplied by LEGO: touch, temperature,
rotation, and light.

3.1 The RCX0O Language

A program consists of a collection of at most ten tasks. There is no special way
to communicate between tasks but all variables are shared, providing a way of
communication. A task can start another task with the command StartTask (i)
and stop it with the command StopTask(i). Starting a task means restarting
it from the beginning. That is, there is no command for resuming the execution
of a task nor spawning an extra “instance” of a task.

The language has some commands for controlling the actuators, the main
ones being On(1i) and 0ff(1i) where 1i is a list of ports. The commands
SetFwd(1i) and SetRwd (1i) sets the direction of the ports in 1i to forward and
reverse respectively. There are also a number of instructions for manipulating
variables. All of these take three integer arguments. The first argument specifies
the target variable, the second the type of the source, and the third the source.
The most important types of sources are: variables (the third argument is then
the number of the variable), constants (the third argument is then the value), and
sensor readings (the third argument is then the number of the sensor). These
types of sources can be used in the instruction SetVar(i,j,k) for assigning
a value to a variable. In the instructions for calculating like SumVar(i, j,k),
SubVar(i,j,k), and MulVar(i, j,k) sensor readings are not allowed.

Loops can be defined in two ways, either by the Loop(j,k) instruction or by
the While(j,k,1,m,n) instruction. The arguments of the Loop indicates how
many times the body should be iterated in the same way as the source of the
instructions for calculating. The While loop is iterated as long as the condition
specified by the arguments is satisfied. The first two and last two arguments
specify the sources of a comparison as in an assignment and 1 specifies a relation
from the set {=, <, >, #}.

There is also a conditional, If (j,k,1,m,n), with the condition specified as
in the While construct and an Else branch can be specified as well.

One can block a task for a given time using the Wait (j,k) statement. When
the specified time has passed, execution of the task is resumed.

During execution a task is either enabled or blocked. A task can be blocked
by a StopTask(i) instruction, by a Wait(j,k) instruction, or by finishing its
execution (reaching the end of the code). Initially only task zero is enabled. The
enabled tasks are executed in a round robin fashion, where each task executes
one instruction and then leaves control for the next task.

The statements presented above constitute the part of the RCXO language
which we have used for implementing control automata.

A Case Study on Using Automata in Control Synthesis 353
4 Example

As an example we will look at a crane which we will program in the RCX0O
language. We have built the crane and tested it with different control programs.
The crane is run by three motors connected to the RCXO. One motor is driving
the wheels, one is turning the turret around, and one is moving the hook up
and down. The input for the three motors are three touch sensors, which is all
the RCX0O brick has room for. This means we can only turn motors on and off.
Therefore the crane alternates between moving forward and backward each time
the motor is turned on. The direction of turret and the hook is controlled in a
similar way.

A very basic control program for the crane could consist of four tasks. One
task for setting up the sensors and motors, and starting the other tasks. For
each of the three inputs, one task for monitoring input and controlling the motor
correspondingly. Task 1 for monitoring sensor 0 would then be

BeginOfTask 1

Loop 2, O ’An infinite loop
SetFwd "0" ’Set direction of motor O to forward
SetVar 1, SENSOR, O ’Varl := Sensor0O

While VAR, 1, 3, CONST, 1 ’While Varl != 1
SetVar 1, SENSOR, O

EndWhile

On "O" ’Start motor 0O
Wait CONST, 100 ‘Wait

SetVar 1, SENSOR, O ’Varl := Sensor0O

While VAR, 1, 3, CONST, 1 ’While Varl != 1
SetVar 1, SENSOR, O

EndWhile
off "O" ’Stop motor 0O
Wait CONST, 100 ’Wait
. repeat the code replacing SetFwd "O" with SetRwd "O" ...
EndLoop
End0fTask

The Wait statements ensures that one touch of the sensor is not read as two
touches. We could of course have tested for this but for our example this will
do. The two other tasks for controlling the remaining two motors look similar,
only the numbers of variables, sensors and motors are different.

For the purpose of illustrating the presented method we choose to place the
following constraints on the behavior of the crane. First of all we only want one
thing happening at a time, so we will not allow for two motors to be turned
on at the same time. Pressing the touch sensor could now be seen as a request
which the control program may grant (and start the motor) when all the motors
are stopped. Moreover, we want that moving the hook has higher priority than
the wheels and the turret. Requests from the other two are handled in order of
arrival. The first constraint on the behavior is basically mutual exclusion which
is nontrivial to implement in the RCXO language (this is an integrated part of

354 Thomas Hune and Anders Sandholm

the implementation of the automata-based approach described in Section @]). On
top of this we have a mixed priority and queue scheme.

5 Logic-Based Specifications

Basically we could keep the initial simple control program if we had a way of
pruning out some unwanted executions. To be able to implement the constraints
we have to change the initial control program slightly. This is done by considering
touching a sensor as a request. The motor can be turned on when the request
is accepted. Even with these changes the program is still a simple to write.
Execution of the program gives rise to a sequence of events. In our case we will
consider input (requests), and two kinds of output (start and stop motor) as
events. We then implement the automaton accepting the language over these
events satisfying the introduced constraints. With this approach we can thus
keep the control program simple.

Traditionally, control languages are described by automata which are in some
cases a good formalism to work with. However, having experience in using logic
for specifying properties, we will take that approach here. In this section we
describe the use of a logic formalism from which we can automatically generate
automata.

5.1 Terminology

An automaton is a structure A = (Q, ¢, X, —, F), where @Q is a set of states with
initial state ¢ € @, X is a finite set of events, —C @Q x X x @Q is the transition
relation, and F' C @ the set of acceptance states. We shall use q; — g2 to denote
(q1,0,q2) €—. A sequence w = 0¢oy...0,—1 € X* is said to be accepted by
the automaton A if there exists a run of A which reads the sequence w and

ends up in an accepting state ¢. So we have ¢1,...,q,—1 € Q and g € F, such
that ¢ %% ¢1 3 ... 757 ¢u_1 75" ¢. We shall denote by L(A) the language

recognized by an automaton, that is, L(A) = {w € X* | A accepts w }.

In order to be able to define the notion of a legal control language, one
partitions the event set X into uncontrollable and controllable events: X = X, U
Y. The controllable events can be disabled by the control automaton at any
time, whereas the uncontrollable ones are performed autonomously by the system
without any possible interference by the control automaton, which merely has
to accept the fact that the particular uncontrollable event has occurred. Thus a
control language must in some sense, which is defined precisely below, respect
the uncontrollableness of certain events. Furthermore, since our method only
allows restrictions concerning safety properties, it does not make sense to have
non-prefix-closed languages as control languages. That is, we define the notion
of control language as follows.

A Case Study on Using Automata in Control Synthesis 355

Let pre(L) denote the prefix closure of a language L, and let unc(L) denote
closure of L under concatenation of uncontrollable events. That is, let

pre(L) ={ve X" |Jwe X" :vw e L} and
unc(L) ={vw e X*|ve LAwe X }.

A language, L over X = X, U X, is called a control language if it satisfies the
two properties pre(L) = L and unc(L) = L.

When using deterministic finite state automata to specify sets of sequences,
checking for prefix closedness is easy. One just has to make sure that all tran-
sitions from non-accepting states go to non-accepting states. Similarly, checking
closure under concatenation of uncontrollable events is straightforward for de-
terministic automata.

What is new here, in comparison to the use of our method in [13], apart from
the new domain of LEGOUO RCXL[robots, is the partition into controllable and
uncontrollable events and the resulting additional restrictions and computations.

5.2 Specification Logic

It would be nice if instead of converting the informal requirement in Section
into an automaton, one could write it formally in a specification formalism closer
to natural language. That is, we would like to be able to write something like
the following.

— Only one motor can be turned on at a time;

— If the wheels get turned on, then the hook must not be requesting and the
wheels must have been the first to make a request; and

— If the turret gets turned on, then the hook must not be requesting and the
wheels must have been the first to make a request.

We therefore turn to a formalism that is as expressive as finite state automata
and yet still allows for separation of the declaratively specified requirements (pre-
viously our control automaton) and the operational part of the control program
(the existing RCXO program).

Experience has shown that logic is a suitable specification formalism for con-
trol languages. For the purpose of defining controllers for LEGOO RCXDO robots,
we have chosen to use M2L. One might argue in favor of other specification for-
malisms such as high-level Petri Nets [6] or Message Sequence Charts [I1]. Being
a logic formalism, however, M2L has the advantage that specifications can be
developed iteratively, that is, one can easily add, delete, and modify parts of a
specification. It also has a readable textual format. Moreover, the formalism in
use should be simple enough that a runtime checker, such as an automaton, can
actually be calculated and downloaded to the RCX[O brick. Thus, M2L is power-
ful and yet just simple enough to actually subject it to automated computation.

Experience in using M2L as a language for defining control requirements
has shown that only the first-order fraction of the logic is used in practice [I}

356 Thomas Hune and Anders Sandholm

13]. We shall thus consider only first order quantifications, though second-order
quantifications could be added at no extra cost.
The abstract syntax of the logic is given by the following grammar:

¢pu=3p: ¢ |Vp: ¢ [~¢' | ¢ NG|V | =" o) |t <
tu=pl|t+1

That is, M2L has the constructs: universal and existential quantifications over
first order variables (ranging over positions in the sequence of events), standard
boolean connectives such as negation, conjunction, disjunction, and implication,
and basic formulae, o(t), to test whether an event o can be found at position ¢,
and t < ¥/, to test whether position ¢ is before position ¢'. It also has operations
on terms, such as, given a position ¢ one can point out its successor (¢ + 1), and
simple term variables (p).

A formula ¢ in M2L over the event set X will — when interpreted over a
finite sequence of events w — either evaluate to true or to false and we shall
write this as w | ¢ or w [~ ¢, respectively. The language associated with ¢ is
L(¢) = {w € X* | w = ¢}. The language associated with an M2L formula is
guaranteed to be regular. In fact, it has been known since the sixties that M2L
characterizes regularity [2, [4].

The Mona tool implements the constructive proof of the fact that for each
M2L formula there is a minimal deterministic finite state automaton accepting
the language of the formula. That is, Mona translates a particular M2L formulae,
¢, into its corresponding minimal deterministic finite state automata (MDFA),
A, such that L(¢) = L(A).

Ezample 1. Let X = {a,b,c}. The M2L formula to left

b,c ¢ a,b,c
Vp,p" s (p < p" Na(p) Na(p”)) a
= I :p<p <p" ADQY) > C %5
b

is true for sequences in which any two occurrences of a will have an occurrence
of b in between. Using Mona, one can compute the automaton corresponding to
the formula above. The resulting automaton appears to the right.

Ezxample 2. With this logic-based specification language in place, we can write
a specification of the requirements given in the example. The logic-based spec-
ification looks quite complex at first. However, because of it’s modular struc-
ture we find it easier to handle than the automaton. The basic formulae for
the elements of the alphabet are reql(t), req2(t), req3(t), turnoni(t),
turnon2(t), turnon3(t), turnoff1(t), turnoff2(t), and turnoffi(t). The
first three are uncontrollable events of the alphabet and the rest are controllable
events of the alphabet. A predicate is true if the event at position ¢ is the men-
tioned event. Using these basic predicates we can define some basic predicates
like all motors are stopped by:

A Case Study on Using Automata in Control Synthesis 357

off1(t) = (Vt' : t' < t = —turnoni(t’)) vV
(Vt': (' <t Aturnoni(t')) =
3"t <" A" <t Aturnoffi(t”))

Similarly, we define predicates off2(t) and off3(t) and using these we can
define a predicate, alloff (t), specifying that all the motors are turned off.

alloff (t) = off1(t) A off2(t) A off3(t)

We can specify that motor 1 has been requested to be turned but has not yet
been turned on by the following predicate:

requestl(t) = 3t' : ¢’ <t Areql(t’) A (V" : (t' <t At" < t) = —turnoni(t”))

Predicates request2(t) and request3(t) are specified similarly. Using this
we can define a predicate specifying that the first request which has not been
acknowledged is one.

reqlfirst(t) =reql(t) AVt : (t' <t Arequesti(t') A
vi" (¢ <t At < t) = —requesti(t’)) =
((req2(t') = 3" : t' <" ANt" <t A —req2(t")) A
(req3(t') = Ft" : ¢/ <" ANt <t A—1eq3(t")))

Again, predicates req2first (t) and req3first (t) are specified similarly. With
these basic predicates as building blocks we can give a specification closely related
to the informal requirements of the example.

Vit : (turnoni(?) V turnon2(t) V turnon3(t)) = alloff(¢) A
Vt : turnon2(t (mreql(t) A req2first(t)) A
)

)= t
Vt : turnon3(t) = (—reql(t) A req3first(t)),
An informal specification for the control of the crane containing three properties
was given in Section B2 Each of these properties corresponds to one of the lines
in the predicate above. For instance the first line of the predicate specifies that
if a motor is turned on then all the motors are turned off. This corresponds to
the first property that only one motor can be turned on at a time. Similar for
the remaining two lines and properties.

Since our basic control program specifies the order of the events in the indi-
vidual tasks (first req, then turnon, and then turnoff), this specification will
define the wanted behavior.

From this specification Mona generates the minimal deterministic automaton
which has 46 states and 276 transitions (six from each state).

Should we want to change the control language of our example in such a way that
all three tasks have equal priority, the overall structure of the control automaton
would change. As the following example will show, modifying the logical formula
is indeed quite comprehensible in the case of the LEGOO crane requirements.

358 Thomas Hune and Anders Sandholm

Ezample 3. Say that we would like to change the requirements such that all
motors are given equal priority, that is, they will be turned on in a first come
first served manner. Using the logic-based specification, all we have to do is to
change the last two lines of our specification slightly resulting in the following
fifo requirement.

Vt : (turnoni(t) V turnon2(t
Vi : turnoni(t) = reqlfirst(t
Vi : turnon2(t) = req2first(t
Vt : turnon3d(t) = req3first(t

V turnon3(t)) = alloff(¢) A
A
A

)
)
)
).

Note that the sub-formulae, such as, alloff () and req2first() are reused
from the previous specification. As we can see it is relatively easy to change the
specification using the previously defined primitives.

From this specification Mona generates an automaton with 79 states and 474
transitions.

6 Merging Automata and RCX[Code

Given a control automaton and the basic control program, one can synthesize
the complete control program. In this section we describe how to translate an
automaton into RCX[O code and how this is merged with the existing RCX0O
control program. For our example we have done this by hand. It should be clear
from this section that only standard techniques are used and these can easily be
carried out automatically.

6.1 Wrapping the RCX[Code

The execution of the basic control program is restricted to sequences allowed by
a control automaton as follows. Firstly, RCXO code is generated for the control
automaton and then this code is merged with the existing RCXO code. Merging
RCXO code with an automaton can in some sense be considered a program
transformation. Each statement involving a request or writing to an output port
is replaced by a block of code that tests whether the operation is legal according
to the control automaton. For our example an action should be delayed if the
control automaton does not allow it. Transforming the code for turning motor 0
on, will lead to the following piece of code.

While VAR, 4, 3, CONST, 1 ’While automaton has not accepted the command

SetVar 31, CONST, 1 ’Arg := onO, the argument for the automaton
GoSub 0 ’Run the automaton
SetVar 4, VAR, 22 ’Local success:= global success

EndWhile

On "O" ’Execution of the actual command

A Case Study on Using Automata in Control Synthesis 359

We have chosen to implement the automaton as a subroutine. Since arguments
for subroutines are not allowed in the language, passing an argument to the
automaton has to be done via a global variable. Similarly, since a subroutine
cannot return a value, return values are also placed in global variables for the
process to read. The while loop delays the action until the automaton accepts
execution of it.

6.2 Implementing Mutual Exclusion and Automata

However, the idea described above is not sufficient since we will not allow more
tasks to use the automaton simultaneously. In the RCX[language the problem
is obvious since we are using shared variables for passing arguments and results.
In general, we also need exclusive access to the automaton since the outcome of
the automaton depends on its state when execution begins. If a process accesses
the automaton while it is used by another process, the state variable might be
corrupted. Therefore we must have exclusive access to the automaton.

In our implementation we have used Dijkstra’s algorithm to implement mu-
tual exclusion between several processes [3]. But any correct mutual exclusion
algorithm would of course do. The algorithm uses some shared variables but this
is no problem in the RCXO language since all variables are shared. There are
no gotos in the RCXDO language. Therefore, we have used an extra while loop
and a success variable for each task. Except from these details, the algorithm is
followed directly.

An automaton is implemented in the standard way by representing the tran-
sition relation as nested conditionals of depth two branching on the current
state and the input symbol respectively. The current state and the input sym-
bol is represented by one variable each. This gives us a way to combine the
run of an automaton with the execution of standard RCXO code with wrapped
input/output statements.

6.3 Variations of the Method

In the example an action is delayed if the control automaton does not grant
permission at once. Depending on the problem to be solved the action taken
when permission is not granted can vary. That is, there are various ways of
handling this temporary lack of controller acknowledgment:

— as in the above example where the task is busy wait asking the controller
over and over whether its label had been enabled; but

— one could also simply cancel or ignore the statement requesting permission
and continue execution. This could be done by replacing the busy waiting
while loop by an if statement.

The former would often be the preferred approach in cases where the internal
state of the code is important, such as, in our example, or in a train gate con-
troller. The latter would be a good choice in cases where the code is written in

360 Thomas Hune and Anders Sandholm

a reactive style, constantly changing output action based on newly read input,
e.g. in autonomous robots.

The property implemented by the automaton in the example was specific to
the problem. One could also imagine using the method for general properties
e.g. for protecting hardware against malicious sequences of actions. This leaves
at least two options of where to put the automaton:

— as in the example above where the automaton was put alongside the wrapped
RCXUO code. Placing the code implementing the automaton at this level
seems a natural choice when dealing with properties about the behavior of
a specific RCX[O program solving a particular problem.

— If the property is of a more general kind, one should rather place the au-
tomaton at the level of the operating system.

So far we have only considered untimed properties. One could easily imagine
using automata with discrete time as control automata. This would open for a
whole new range of properties to be specified, e.g. a minimum delay between
two actions. In the example it would be possible to specify properties like that a
minimum time of 5 seconds should pass between stopping the crane and starting
to move the hook.

On the RCXDO this could be realized by having a variable representing the
discrete time. This variable could be updated by a task consisting of an infinite
loop waiting for one time unit and then updating the variable. Assuming variable
number zero represents the time, it could be updated by:

SetVar 0, CONST, O ’Initialize the timer
Loop CONST, O ’An infinite loop
Wait CONST, 10 ’Wait for 1 sec.
SumVar O, CONST, 1 ’Update the timer
EndLoop

7 Conclusion

We have used control automata in conjunction with basic control programs for
synthesizing complete control programs. Using this method one can add to a
basic control program a control automaton which will ensure certain safety prop-
erties are satisfied. We have used M2L to specify the control automata and the
Mona tool to translate formulae into automata.

The approach has been implemented in the setting of the LEGOO RCXO
system. This has allowed for the possibility of testing the implementations on
real physical systems.

Based on our experiments we find the method well suited for synthesis of
programs ensuring safety properties like the ones we have used. We find the
main advantage of the method is the ease of testing different specifications. The
separation of the active control program and the restricting automaton also
allows for ensuring (new) safety specifications to existing control programs. In

A Case Study on Using Automata in Control Synthesis 361

critical systems one might consider the automaton only for monitoring actions,
not restricting these, to avoid deadlocks.

The main disadvantage of the method is the restriction to safety properties.

Since the all concurrent tasks must access the automaton there is a danger of
this becoming bottleneck.
Future work There is an overhead connected with gaining exclusive access
to the automaton and running it. How much time is spent on gaining access
to the automaton of course depends on the arrival of input events. It would be
interesting to calculate some specific times for this given some input sequences.
A tool for translating RCXO programs to timed models supported by Uppaal [8]
exists [0]. Using Uppaal one can “measure” the time spent by a program from
an input is read until the response arrives.

The example presented in this paper only has one component (one crane)
and the control restrictions are consequently imposed on that particular compo-
nent only. One could easily imagine having several components in a distributed
environment working to achieve a common goal. By use of modular synthesis
and distributed control [12] via independence analysis [13] one can statically in-
fer information about which constraints to put locally on the components and
which to put on the (most often necessary) central controller.

References

[1] Claus Brabrand. Synthesizing safety controllers for interactive Web services. Mas-
ter’s thesis, Department of Computer Science, University of Aarhus, December
1998. Available from http://www.brics.dk/~brabrand/thesis/.

[2] J.R. Biichi. Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundl. Math., 6:66-92, 1960.

[3] E.W. Dijkstra. Solution of a problem in concurrent programming control. Com-
muntcations of the ACM, 8(9):569, September 1965.

[4] C.C. Elgot. Decision problems of finite automata design and related arithmetics.
Transactions of the American Mathematical Society, 98:21-52, 1961.

[5] T. Hune. Modelling a real-time language. In Proceedings of Fourth International
Workshop on Formal Methods for Industrial Critical Systems, 1999.

[6] K. Jensen and G. Rozenberg, editors. High-level Petri Nets — Theory and Appli-
cation. Springer-Verlag, 1991.

[7] N. Klarlund and A. Mgller. MONA Version 1.3 User Manual. BRICS Notes Se-
ries NS-98-3 (2.revision), Department of Computer Science, University of Aarhus,
October 1998.

[8] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. In Springer
International Journal of Software Tools for Technology Transfer, 1(1+2), 1997.

[9] LEGO. Software developers kit, November 1998. See
http://www.legomindstorms.com/.

[10] Z. Manna and A. Pnueli. Synthesis of communicating processes from temporal
logic specifications. ACM Transactions on Programming Languages and Systems,
6(1):68-93, January 1984.

[11] S. Mauw and M. A. Reniers. An algebraic semantics of Basic Message Sequence
Charts. The Computer Journal, 37(4):269-277, 1994.

362

[12]

[13]

Thomas Hune and Anders Sandholm

Peter J. G. Ramadge and W. Murray Wonham. The control of discrete event
systems. Proceedings of the IEEE, 77(1):81-98, January 1989.

Anders Sandholm and Michael I. Schwartzbach. Distributed safety controllers for
Web services. In Egidio Astesiano, editor, Fundamental Approaches to Software
Engineering, FASE’98, Lecture Notes in Computer Science, LNCS 1382, pages
270-284. Springer-Verlag, March/April 1998. Also available as BRICS Technical
Report RS-97-47.

	Introduction
	Related Work
	Outline of the Paper

	Outline of the Method
	The LEGO{fontfamily {psy}fontencoding {U}fontseries {m}fontshape {n}selectfont char 226}{} System
	The RCX{fontfamily {psy}fontencoding {U}fontseries {m}fontshape {n}selectfont char 228}{} Language

	Example
	Logic-Based Specifications
	Terminology
	Specification Logic

	Merging Automata and RCX{fontfamily {psy}fontencoding {U}fontseries {m}fontshape {n}selectfont char 228}{} Code
	Wrapping the RCX{fontfamily {psy}fontencoding {U}fontseries {m}fontshape {n}selectfont char 228}{} Code
	Implementing Mutual Exclusion and Automata
	Variations of the Method

	Conclusion

