Abstract
We relate several models of concurrency introduced in the literature in order to extend classical Mazurkiewicz traces. These are mainly Droste’s concurrent automata and Arnold’s CCI sets of P-traces, studied in the framework of local trace languages. Also, a connection between these models and classical traces is presented in details through a natural notion of projection. These relationships enable us to use efficiently Arnold’s result in two other frameworks. First, we give a finite distributed implementation for regular CCI sets of P-traces (or, equivalently, finite stably concurrent automata) by means of bounded labelled Petri nets. Second, we present a new, simple and constructive method to relate Stark’s trace automata with Bednarczyk’s asynchronous transition systems. This improves a recent result in Scott domain theory.
Supported by the German Research Foundation (DFG/Graduiertenkolleg)
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Arnold A.: An extension of the notion of traces and asynchronous automata. Theoretical Informatics and Applications 25 (1991) 355–393
Bednarczyk M.: Categories of asynchronous systems. PhD thesis (University of Sussex, 1987)
Bracho F., Droste M., Kuske D.: Representations of computations in concurrent automata by dependence orders. TCS 174 (1997) 67–96
Diekert V., Rozenberg G.: The Book of Traces. (World Scientific, 1995)
Droste M.: Concurrency, automata and domains. LNCS 443 (1990) 195–208
Droste M., Shortt R.M.: From Petri nets to automata with concurrency. — Unpublished manuscript (1999) —
Ehrenfeucht A., Rozenberg G.: Partial (Set) 2-structures. Part II: State spaces of concurrent systems, Acta Informatica 27 (1990) 343–368
Hoogers P.W., Kleijn H.C.M., Thiagarajan P.S.: A Trace Semantics for Petri Nets. Information and Computation 117 (1995) 98–114
Husson J.-Fr.: Modélisation de la causalité par des relations d’indépendances. Thesis (Université Paul Sabatier de Toulouse, 1996)
Husson J.-Fr., Morin R.: Relationships between Arnold’s CCI sets of P-traces and Droste’s stably concurrent automata. Technical report MATH-AL-1-00 (Technische Universität Dresden, 2000)
Kleijn H.C.M., Morin R., Rozoy B.: A General Categorical Connection between Local Event Structures and Local Traces. FCT’99, LNCS 1684 (1999) 338349
Kuske D.: Nondeterministic automata with concurrency relations and domains. CAAP’94, LNCS 787 (1994) 202–217
Mazurkiewicz A.: Concurrent program schemes and their interpretations. Aarhus University Publication (DAIMI PB-78, 1977)
Morin R., Rozoy B.: On the Semantics of Place/Transition Nets. Concur’99, LNCS 1664 (1999) 447–462
Mukund M.: Petri Nets and Step Transition Systems. International Journal of Foundations of Computer Science 3 (1992) 443–478
Nielsen M., Sassone V., Winskel G.: Relationships between Models of Concurrency. LNCS 803 (1994) 425–475
Schmitt V.: Stable trace automata vs. full trace automata. TCS 200 (1998) 45–100
Stark E.W.: Connections between concrete and abstract model of concurrent systems. LNCS 442 (1990) 53–79
Szpilrajn E.: Sur l’extension de l’ordre partiel. Fund. Math. 16 (1930) 386–389
Winskel G.: Event structures. LNCS 255 (1987) 325–392
Zielonka W.: Notes on finite asynchronous automata. Theoretical Informatics and Applications 21 (1987) 99–135
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Husson, JF., Morin, R. (2000). On Recognizable Stable Trace Languages. In: Tiuryn, J. (eds) Foundations of Software Science and Computation Structures. FoSSaCS 2000. Lecture Notes in Computer Science, vol 1784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46432-8_12
Download citation
DOI: https://doi.org/10.1007/3-540-46432-8_12
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67257-9
Online ISBN: 978-3-540-46432-7
eBook Packages: Springer Book Archive