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Abstract. We address the problem of deciding performance equivalence
for a timed process algebra in which actions are urgent and durational,
and where parallel components have independent local clocks.
This process algebra can be seen as a timed extension of BPP, a process
algebra giving rise to infinite-state processes. While bisimulation was
known to be decidable for BPP with a non elementary complexity, our
main and surprising result is that, for the timed extension, performance
equivalence is decidable in polynomial time.

1 Introduction

Performance of processes. In the field of concurrency semantics, there exists a
well-developed and widely accepted approach based on equivalences that relate
processes having the same behaviour [Mil89, Gla90]. This framework has been
extended in many directions in order to take various aspects into consideration:
timing, causality, probability, locality, etc.

In the timed framework, some efforts have been directed toward defining a
robust notion of “performance”, that would allow comparing the efficiency of
systems that have the same functional behaviour (what they do) but different
speeds (how fast they do it). See, e.g., [MT91, AH92, FM95, GRS95, CGR97,
Cor98].

Durational urgent actions. The efficiency preorders and equivalences considered
in [GRS95, AM96, CGR97, Cor98] apply to process algebras where parallel com-
ponents have their own independent local clocks, where actions have a duration
and are urgent. Urgent actions take place as soon as possible and can only be
delayed when one process must wait until synchronization with another process
becomes possible. When the process algebra does not allow synchronization, this
gives rise to a nice theory where performance equivalence is a congruence for all
process constructors [CGR97].

Verification. These earlier works mainly focused on semantics. However, verifi-
cation issues have been addressed in this framework:
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(1) In [CP96], lazy performance equivalence is shown decidable over a class of
systems having only finite control but allowing for an infinite number of config-
urations when taking into account the values of the local clocks.
(2) In [CC97], a model checking problem for TAL (a modal logic with time) is
shown decidable over another class of systems with finite control.
In both cases, the decision method relies on building a finite approximation of
the system, on which the original problem can be solved with standard finite-
state methods. This induces algorithms with exponential running time since the
finite approximation has exponential size 1. These results can probably be imple-
mented with only polynomial-space requirements, but the issue is not addressed
and no lower bounds for the structural complexity of the problems are given.

Removing the finite control assumption. To the best of our knowledge, when
systems have a potentially infinite number of control states (disregarding clock
values), nothing is known about verification issues for these processes algebra
with urgent actions and local clocks 2. This is probably because the problem
combines two difficulties as it lies at the intersection of two recent fields: verifi-
cation of timed systems and verification of infinite untimed systems.

Our contribution. In this paper we investigate the decidability of the performance
equivalence introduced in [CGR97] when no finite-state restriction is made. Be-
cause no synchronization is considered in this framework, the resulting systems
have a “BPP + Time” flavor 3, in a setting with local clocks. Hence our use of
“TBPP” to denote this algebra.

Decidability of bisimulation for (untimed) BPP is known, via an elegant
algorithm (alas with non-elementary complexity) [CHM93]. The connection with
BPP is what motivated our study: we wanted to see whether local clocks could
be dealt with.

Our main result is that performance equivalence is decidable for TBPP, and
can be decided in polynomial-time (it is in fact PTIME-complete). Surprisingly,
the addition of local clocks does not make the problem harder: they allow decom-
posing systems in a way not unlike what happens for normed processes [HJM96].

This is good news since algorithms for the analysis of well-behaved infinite-
state systems have important applications, ranging from static analysis [EK99] to
modeling and verification of communication protocols [CFP95]. This also justifies
our view that negative results about basic process algebra are not always the
last word, and that the field still contains many unexplored paths.

1 Since the approximation is based on the idea that exact clock values (or differences
between then) can be forgotten when they are large enough, this has similarities with
the region graph technique of [ACD93].

2 In the better known global clock framework, we are aware of [AJ98] where the sys-
tems may have infinitely many distinct states. In addition, there exists a large body
of literature on Timed Petri Nets, but most of these works do not offer decidability
results for unbounded nets.

3 BPP is the algebra of Basic Parallel Processes [Chr93].
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Plan of the paper. Section 2 introduces our notation for TBPP, and the oper-
ational semantics while Section 3 introduces the performance equivalences we
consider. The main technical part starts with the introduction of the syntactic
congruence (Section 4) and the cancellation lemmas (Section 5) that allow us to
prove the main result in Section 6.

Our presentation of TBPP is mostly orientated towards the proof of the main
result: we refer to [CGR97] for motivations, examples, and further discussion of
this process algebra.

2 Timed Basic Parallel Processes

In this section, we define the timed process algebra TBPP as a timed extension
of BPP. This definition is based on the features proposed in [GRS95, AM96,
CGR97]:

– The time domain is the set N of natural numbers.
– We consider urgent and durational actions: a duration function associates

its duration (number of time units taken for execution) with each action.
This mapping is external to the syntax.

– Parallel components have independent clocks and executions are asynchro-
nous and ill-timed but well-caused.

[AM96] showed the technical advantages of the “ill-timed but well-caused” view-
point (which admits an intuitive understanding in terms of external observation).
In this framework, time is not used to enforce a synchronous view of the system.

We mainly deviate from [GRS95, CGR97] by two technical points that do
not bring any real semantical change:

– The date n in a step u
a,n−−→ v denotes the beginning time for a, not the

completing time.
– Instead of defining processes through recursive equations (as is traditional

in process algebra), we adopt Moller’s approach where behaviour is defined
via a set of rewrite rules [Mol96]. This is for technical convenience only.

2.1 Syntax

We consider a set of action names Act ranged over by a, b, . . . and a set of
process variables X ranged over by X, Y, . . . .

Definition 2.1. The set T of TBPP-terms is given by the following abstract
syntax:

t, u ::= Nil | X | t ‖ u | 1 . t.
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As usual, Nil denotes the empty process which cannot proceed with any action,
and t ‖ u is the parallel combination of t and u (no synchronization is possible).
1 . t denotes the process which behaves like t, but with a one time unit delay.

We write n . t for

n︷ ︸︸ ︷
1 . (1 . (· · · (1. t) · · · )) and Xn for

n︷ ︸︸ ︷
X ‖ X ‖ · · · ‖ X. By

convention, 0 . t stands for t and X0 stands for Nil .
For a term t, we denote by V ar(t) the set of process variables occurring in

t, e.g., V ar(X ‖ 1 . (X ‖ Y )) = {X, Y }.

Definition 2.2. A TBPP declaration is a finite set ∆ ⊆ X × Act × T of pro-
cess rewrite rules, written {Xi

a−→∆ ti | i = 1, . . . , n}, such that V ar(ti) ⊆
{X1, . . . , Xn} for any i.

Note that the Xi’s need not be distinct. Additionally, we require that any vari-
able Xi used in ∆ appears in the left-hand side of at least one rule from ∆ (this
is for technical convenience only).

In the examples, we often use the convenient CCS-like notations with action-
prefixing, non-deterministic choice (denoted by +) and guarded recursion. E.g.,
the definition

X1
def= a.(1 . (a ‖ a ‖ a)) + a.(1 . (a.a.a)),

X2
def= a.(1 . (a ‖ a ‖ a)) + a.(1 . (a.a) ‖ 1 . a) + a.(1 . (a.a.a))

is just a shorthand for

∆
def=




X1
a−→ 1 . (Za ‖ Za ‖ Za), X1

a−→ 1 . Za.a.a,

X2
a−→ 1 . (Za ‖ Za ‖ Za), X2

a−→ 1 . (Za.a ‖ 1 . Za), X2
a−→ 1 . Za.a.a,

Za
a−→ Nil , Za.a

a−→ Za, Za.a.a
a−→ Za.a.




2.2 Operational Semantics

The evolution of a TBPP process is represented by a transition system where
the steps carry visible labels of the form (a, n), where a ∈ Act is an action and
n ∈ N is the time at which the step occurs. Actually, n is the time at which the
step starts, and knowing when it finishes requires knowing the duration of a (the
time it takes to perform an a).

Definition 2.3. A duration function f is a mapping from Act to N \ {0}.
1 is the constant duration function s.t. 1(a) def= 1 for any a.

Having f(a) = 3 means that a takes 3 time units. Here a duration function
may represent for instance the performance of a particular machine. Thus this
framework makes it possible to clearly distinguish the functional definition ∆
and the performance definition f .
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Remark 2.4. It is possible to generalise duration “functions” so that (possibly
infinite) sets of values are associated with actions. Our main decidability result
is still valid in this framework (assuming that f is given effectively, for example
by having f(a) be a recognizable set of natural numbers) but the complexity
measures are affected. ut

A pair (∆, f) where ∆ is a TBPP declaration and f a duration function
defines a labeled transition relation →f⊆ T × (Act ×N)×T , where →f is given
inductively via the following SOS rules:

X
a,0−−→f f(a) . t

(X a−→∆ t) ∈ ∆

t
a,n−−→f t′

1 . t
a,n+1−−−−→f 1 . t′

t
a,n−−→f t′

t ‖ u
a,n−−→f t′ ‖ u

t
a,n−−→f t′

u ‖ t
a,n−−→f u ‖ t′

We use the usual standard abbreviations: t
w−→ t′ (with w ∈ (Act × N)∗ ),

t
∗−→ t′, . . . and omit the f subscript when it is clear from the context.
A run of t is a finite or infinite sequence (t =) t0

a1,n1−−−→ t1
a2,n2−−−→ t2 · · ·

ak,nk−−−→
tk · · · . The trace of such a run is the sequence w = (a1, n1)(a2, n2) . . . (ak, nk) . . .

A run is ill-timed if there are two positions i > j s.t. ni < nj . TBPP allows ill-
timed runs, but [AM96] argues convincingly that (1) this brings no semantical
problem since “the ill-timed runs are well-caused” (i.e. local, causaly related,
clock values do increase along a run), and (2) this greatly simplifies the technical
treatment (see also [CGR97]).

Example 2.5. Consider f = 1 and the term X given by X
def= a(bb ‖ c) + ac(b ‖

b). The maximal traces of X are (a, 0)(b, 1)(b, 2)(c, 1), (a, 0)(b, 1)(c, 1)(b, 2),
(a, 0)(c, 1)(b, 1)(b, 2) and (a, 0)(c, 1)(b, 2)(b, 2). The first one is ill-timed.

2.3 Timing Measures

Two structural measures can be associated with a term: minclock (u) ∈ N ∪{∞}
is the earliest time at which u can start an action, while maxclock (u) ∈ N∪{−∞}
is the latest time.

We assume ordering and addition over N are extended in the obvious way to
∞ and −∞, and we define the two measures by structural induction over terms:

minclock (Nil) def= ∞ maxclock (Nil) def= −∞
minclock (X) def= 0 maxclock (X) def= 0

minclock (1 . u) def= 1 + minclock (u) maxclock (1 . u) def= 1 + maxclock (u)
minclock (u ‖ v) def= min(minclock (u),minclock (v))
maxclock (u ‖ v) def= max(maxclock (u),maxclock (v))
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Example 2.6. For u = 1.(X ‖ 2.X) we have minclock (u) = 1 and maxclock (u) =
3, and indeed if ∆ contains X

a−→ t, then u
a,1−−→ . . . and u

a,3−−→ . . .

More generally:

Lemma 2.7. For any u, u
a,n−−→ v implies minclock (u) ≤ n ≤ maxclock(u) and

minclock (u) ≤ minclock (v).
In the other direction, if u can make a move, then there exists a move u

a,n−−→ v

with n = minclock (u) and a u
a′,n′−−−→ v′ with n′ = maxclock (u).

Proof. Easy induction on u. ut

More fundamental is the following lemma, stating that minclock can be made
arbitrarily large:

Lemma 2.8. For any u and any n ∈ N there is a u
∗−→ v s.t. minclock (v) > n.

Proof. An easy induction on u shows that if minclock(u) < ∞ then that u
∗−→ v

for some v s.t. minclock (v) > minclock (u). ut

3 Performance Equivalences

In this section, we recall the definition of performance equivalence introduced
in [GRS95, CGR97]: “f -performance equivalence” is associated with a duration
function f while “independent-performance equivalence” abstracts from the par-
ticular duration function.

f -performance equivalence corresponds to strong bisimulation [Mil89] on
TBPP transitions, taking timing information into account.

Definition 3.1. A relation R ⊆ T × T is called a f -performance relation if
uRv implies that

1. for any u
a,n−−→f u′ there is a move v

a,n−−→f v′ s.t. u′Rv′,
2. and vice versa: for any v

a,n−−→f v′ there is a u
a,n−−→f u′ with u′Rv′.

Definition 3.2. Two TBPP terms u and v are f -performance equivalent (writ-
ten u ∼f v) if there is a f -performance relation R such that uRv.

Example 3.3. Assume f(a) = 1 and consider X
def= a.(X ‖ X) and Y

def= a.Y .
Then X 6∼f Y because the steps X

a,0−−→ 1 . (X ‖ X)
a,1−−→ 1 . (X ‖ 1 . (X ‖

X))
a,1−−→ 1 . (1 . (X ‖ X) ‖ 1 . (X ‖ X)) cannot be imitated by Y . (However X

and Y are bisimilar when timing is not taken into account: they both behave as
aω.)
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As expected, ∼f is the largest f -performance relation, it is an equivalence, and
a congruence for the ‖ and 1. operators:

Proposition 3.4. If u ∼f v and u′ ∼f v′ then 1.u ∼f 1.v and u ‖ u′ ∼f v ‖ v′.

Proof. A consequence of the fact that the SOS rules for −→f are in tyft/tyxt, or
even De Simone’s, format [GV92]. ut

Additionally, u ∼f v entails minclock (u) = minclock (v) and maxclock (u) =
maxclock (v), as a consequence of Lemma 2.7.

f -performance equivalence enjoys the usual associativity, commutativity and
nilpotence laws. The distributivity law, (Eq4), is called a clock distribution equa-
tion in [CGR97]:

Proposition 3.5. For any terms t, u, v

u ‖ t ∼f t ‖ u (Eq1)
(u ‖ t) ‖ v ∼f u ‖ (t ‖ v) (Eq2)

t ‖ Nil ∼f t (Eq3)

1 . (u ‖ v) ∼f (1 . u) ‖ (1 . v) (Eq4)
1 . Nil ∼f Nil (Eq5)

3.1 Performance Not Depending from f .

Our definitions followed [CGR97] in that we did not mix functional definitions
(the rules in ∆, the program, . . . ) and timing definitions (the duration function
f , the hardware, . . . ).

We may now define a notion of performance equivalence that does not depend
on f :

Definition 3.6. Two terms u and v are independent-performance equivalent
(written u ∼i v) if u ∼f v for any duration function f .

∼i is a congruence since it is an intersection of congruences.

Remark 3.7. A byproduct of our study is a proof that ∼f and ∼i coincide for any
f (Corollary 5.8), which we see as the reason why [CGR97] introduced both an
f -performance and an independent-performance preorder (these two preorders
do not coincide) but only one performance equivalence, and did not comment
about this. However, since we cannot prove Corollary 5.8 without the technical
developments of the next sections, we shall keep writing ∼f as long as necessary.

ut

4 Structural Congruence

Here we introduce a structural congruence for TBPP. It allows us to exhibit a
normal form for the terms that generalizes the usual normal form for
BPP [CHM93].
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Definition 4.1. We denote by ≡ the smallest congruence induced by the five
equations of Proposition 3.5.

Clearly u ≡ v implies u ∼f v since ∼f is a congruence and it satisfies the five
equations. Also, since ≡ does not depend on f , u ≡ v entails u ∼i v.

Definition 4.2. A term u ∈ T is in normal form if it is some n1 . X1 ‖ . . . ‖
nk . Xk (where the Xi’s need not be distinct, and where we allow ni = 0 or
k = 0).

Using Proposition 3.5, any term can be rewritten to a structurally equivalent
normal form. Moreover, this normal form is unique (modulo associativity and
commutativity of ‖). Sometimes we are only interested in the subterms “0 . Xi”
in a normal form and write it X1 ‖ . . . ‖ Xn ‖ 1 . u.

The normal form of a term u displays all dates for which u can make an
immediate step. A consequence is the very useful Lemma:

Lemma 4.3. u ∼f Nil iff u ≡ Nil iff minclock (u) = +∞ iff maxclock (u) =
−∞.

5 Cancellation for Performance Equivalence

In this section, we prove the surprising result that performance equivalence can
be reduced to a notion of equality of normal forms. For this, we use a decomposi-
tion approach along the lines that have been pioneered by [MM93] and which of-
ten work nicely in timed or normed settings (see Prop. 30 in [AM96] or Prop. 2.2.8
in [Hen88]).

The following lemma is the converse of Proposition 3.4. It emphasizes the
link between the behaviours of the terms u and 1 . u.

Lemma 5.1. 1 . u ∼f 1 . v entails u ∼f v.

Proof. Standard: one checks that R def= {(u1, u2) | 1 . u1 ∼f 1 . u2} is an f -
performance equivalence. ut

Given two TBPP terms u and v, we say that u is earlier than v if
maxclock (u) < minclock (v) and v 6∼f Nil . A separated product is some u ‖ v
with u earlier than v. This syntactic notion is useful because when u ‖ v makes
a move at time n, it is possible to assign the move to u or v on the basis of n
only.

Lemma 5.2. Assume u1 ‖ u2 and v1 ‖ v2 are separated products s.t. u1 and
v1 have same maxclock . Then u1 ‖ u2 ∼f v1 ‖ v2 entails (1) u2 ∼f v2 and (2)
u1 ∼f v1.
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Proof. (1) is easy to see with the separation hypothesis. Let R be the set of all
pairs (u, v) s.t. u1 ‖ u ∼f v1 ‖ v and both u1 ‖ u and v1 ‖ v are separated.
We show that R ∪ ∼f is an f -performance equivalence. Indeed, if u

a,n−−→ u′

then u1 ‖ u
a,n−−→ u1 ‖ u′ which is still separated (or u′ ∼f Nil). Now there is a

v ‖ v1
a,n−−→ t with u1 ‖ u′ ∼f t but this step can only come from v, so that t

is some separated v1 ‖ v′ (or v′ ∼f Nil). Since u1 and v1 have same maxclock ,
u′ ∼f Nil iff v′ ∼f Nil and we have (u′, v′) ∈ R∪ ∼f .

(2) We now prove u1 ∼f v1. Let R be the set of all pairs (u, v) s.t. u and v
have same maxclock , and there exists a t s.t. u ‖ t ∼f v ‖ t and u ‖ t and v ‖ t
are separated. We show R ∪ ∼f is an f -performance equivalence. Consider a
pair (u, v) ∈ R (via some t) and let K be the largest maxclock for all immediate
successors of u and v. K is finite because TBPP has finite branching. Thanks to
Lemma 2.8, there is a sequence w s.t. t

w−→ t′ and minclock (t′) > K.
Consider a step u

a,n−−→ u′. Now u ‖ t
w−→ u ‖ t′

a,n−−→ u′ ‖ t′. Then there must
exist a v ‖ t

w−→ v ‖ t′′
a,n−−→ v′ ‖ t′′ with u ‖ t′ ∼f v ‖ t′′ and u′ ‖ t′ ∼f v′ ‖ t′′.

We have t′ ∼f Nil iff t′′ ∼f Nil (because they have same maxclock ) so that (1)
gives us t′ ∼f t′′. Thanks to minclock (t′) > K, we have u′ ∼f Nil iff v′ ∼f Nil
(because u′ ‖ t′ and v′ ‖ t′ have same minclock ). If u′ 6∼f Nil then both u′ ‖ t′

and v′ ‖ t′′ are separated, so that (u′, v′) ∈ R. Otherwise u′ ∼f Nil ∼f v′. ut

Of course, normal forms are separated in an obvious way. Hence:

Lemma 5.3. Assume X1 ‖ . . . ‖ Xm ∼f X ′
1 ‖ . . . ‖ X ′

m′ . Then m = m′ and to
any Xi we can associate a X ′

j s.t. Xi ∼f X ′
j.

Proof. Obviously m = m′ since any maximal execution of X1 ‖ . . . ‖ Xm has
exactly m steps with date 0. Now pick actions ai’s s.t. Xi

ai,0−−→ ui. We have
X1 ‖ . . . ‖ Xm

a2,0−−→ a3,0−−→ · · · am,0−−−→ X1 ‖ 1 . u. Then there is X ′
1 ‖ . . . ‖

X ′
m

a2,0−−→ a3,0−−→ · · · am,0−−−→ v with X1 ‖ 1 . u ∼f v. But v is reached by m− 1 steps
at date 0 from X ′

1 ‖ . . . ‖ X ′
m, hence it has the form X ′

j ‖ 1 . u′. The previous
lemmas entail X1 ∼f X ′

j (and u ∼f u′), which conclude the proof. ut

Lemma 5.4. Assume X1 ‖ . . . ‖ Xm ∼f X ′
1 ‖ . . . ‖ X ′

m. Then there is a
bijective h : [1..m] → [1..m] s.t. Xi ∼f X ′

h(i) for all i.

Proof. We split the multiset {X1, . . . , Xm, X ′
1, . . . , X ′

m} into the equivalence
classes induced by ∼f . If every class contains exactly as many Xi’s as X ′

j ’s,
then h is easy to build. Otherwise we can assume w.l.o.g. that one class is
{X1, X2, . . . , Xp, X

′
1, X

′
2, . . . , X ′

q} with p < q. Assume Xi
ai,0−−→ for all i’s, and

consider w = (a1, 0) . . . (ap, 0). We have a move X1 ‖ . . . ‖ Xm
w−→ 1 .u ‖ Xp+1 ‖

. . . ‖ Xm. This is imitated by X ′
1 ‖ . . . ‖ X ′

m
w−→ 1 . u′ ‖ X ′

ip+1
‖ . . . ‖ X ′

im
.

Lemma 5.2 entails that Xp+1 ‖ . . . ‖ Xm ∼f X ′
ip+1

‖ . . . ‖ X ′
im

. Now one index
(say j) in {ip+1, . . . , im} must belong to {1, . . . , q}. This contradicts Lemma 5.3
because we assumed X ′

j has no match in Xp+1, . . . , Xm. ut
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As a consequence, we now have the following important result, reducing ∼f to
“equality” of normal forms:

Theorem 5.5. Assume u ≡ n1 . X1 ‖ . . . ‖ nm . Xm and v ≡ n′1 . X ′
1 ‖ . . . ‖

n′m′ .X ′
m′ . Then u ∼f v iff there is a bijective h : [1..m] → [1..m′] s.t. ni = n′h(i)

and Xi ∼f X ′
h(i) for all i.

Hence f -performance equivalence of u and v can be reduced to a combination
of f -performance equivalence of variables.

An equivalence relation ≈ between variables of X can be extended to terms:
we say u ≈ v when the normal forms n1 . X1 ‖ . . . and n′1 . X ′

1 ‖ . . . of u and v
can be related by a bijective h s.t. ni = n′h(i) and Xi ≈ X ′

h(i).

Definition 5.6. An equivalence relation ≈ between variables of X has the trans-
fer property if for any X ≈ Y and for any X

a−→∆ u there is a Y
a−→∆ v s.t.

u ≈ v.

Clearly, if ≈ has the transfer property, then its extension to terms is an f -
performance equivalence. Conversely, Theorem 5.5 implies that ∼f ∩(X × X )
has the transfer property. But the transfer property for some ≈ does not depend
on f . Hence

Lemma 5.7. Let f and g be two duration functions. Then ∼f and ∼g coincide.

Corollary 5.8. u ∼i v iff there is a duration function f such u ∼f v iff u ∼1 v.

Remark 5.9. Corollary 5.8 calls for comments. It is not a paradox and can be
compared, e.g., with Prop. 13 from [AM96]. Still, we see no easy way to prove
it without going through the analysis required for our Theorem 5.5.

Observe that it does not hold if we allow duration functions taking the value
zero (which is rather meaningless in our framework). E.g., the terms from Ex-
ample 3.3 become performance equivalent when f(a) = 0.

Similarly, it does not hold in a framework where we associate several values
to a same action (cf. Remark 2.4). E.g., with

∆ = {X a−→ X, X
a−→ 2 . X, Y

a−→ X, Y
a−→ 1 . X, Y

a−→ 2 . X}

we have X 6∼i Y but X ∼f Y when f(a) = {1, 2}. ut

As a consequence, we may write indistinctly ∼ for any ∼f (and for ∼i). We do
that in the rest of the paper, where we assume additionally that f is the constant
duration function 1.
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6 Decidability of Performance Equivalence

With the results from Section 5, deciding performance equivalence is simple
since it amounts to computing the largest equivalence on variables that has the
transfer property.

Proposition 6.1. Computing ∼ ∩(X × X ) can be done in time polynomial in
|∆|.
(Where |∆| is the number of rules plus the sum of the sizes of the left-hand
sides.)

Proof. Given ∆ we partition the set X of variables into equivalence classes. This
is done in the usual way, starting with ≈0= X × X and refining ≈i into ≈i+1

until stabilization. The refinement step removes a pair (X, Y ) from ≈i whenever
there is a X

a−→ u in ∆ s.t. no Y
a−→ v has u ≈i v (which can be checked easily by

a sorting algorithm when u and v are in normal form). Stabilization is reached
after at most |X | − 1 refinement steps. ut
Hence deciding whether u ∼ v can be done in time polynomial in |u|+ |v|+ |∆|.
Finally we have

Theorem 6.2. Deciding performance equivalence over TBPP is P -complete.

Proof. We already know membership in P and only prove P -hardness.
When no parallel composition is involved, TBPP terms behave like finite-

state processes where the single local clock just records the length of the his-
tory of the computation. Hence performance equivalence of these sequential
terms reduces to strong untimed bisimilarity of the underlying unfolded trees,
which is just strong bisimilarity of untimed finite state processes, entailing P -
hardness [BGS92]. ut

7 Conclusion

In this paper we investigated TBPP, a timed extension of the BPP. TBPP is
essentially equivalent to the algebra of [CGR97], itself obtained by forbidding
synchronization in earlier process algebra with urgent durational actions.

In this framework, [CGR97] introduced performance equivalence as a way to
relate processes having the same behaviour and the same efficiency.

Our main result is a polynomial-time method for deciding performance equiv-
alence over this class where systems can have an infinite number of different
states (even disregarding time). Thus, BPP + Time turns out to be simpler
than plain BPP, which is a surprising result. This suggests that timed exten-
sions of related infinite-state algebra should be investigated and could well turn
out to be simpler than their better-known untimed counterpart. Let us suggests
some directions:

1. Bisimulation of normed PA processes is decidable [HJ99] but appears quite
complex. What about performance equivalence for PA+Time?
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2. Decidability of observational equivalence (a.k.a. τ -bisimulation) of BPP pro-
cesses is an important open problem [Esp97, KM99]. What about observa-
tional performance equivalence? (Adding τ ’s to TBPP can be done in sev-
eral ways: e.g., they can model internal actions with null duration instead of
abstracted-away actions with positive duration.)

3. Most behavioural equivalences are undecidable on BPP processes [Hüt94].
What about BPP+Time?
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