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Abstract

Database middleware systems require the depl oyment of application-specific datatypesand query op-
eratorsto the servers and clients of a distributed database system. Existing middleware solutionsrely on
developers and system administrators to port and manually install al this application-specific function-
ality toal sitesin the system. Thisapproach cannot scale to an environment in which there are hundreds
of data sources, such as those accessed by the Web and even more custom-tailored applications, since
the complexity and the cost involved in maintaining a code base system-wide are enormous. This paper
describes a novel metadata-driven framework designed to automate the deployment of all application-
specific functional ity used by amiddleware system. We used Javaand XML to implement thisframework
inMOCHA, amiddleware system that was devel oped at the University of Maryland. Wefirst present the
kind of services, metadata el ements and software tools used in MOCHA to automate code depl oyment.
Then, we describe how the features of MOCHA simplify the administration and reduce the management
cost of amiddleware system in alarge scale environment.

1 Introduction

Database middleware systems, such as database gatewaysand mediator systems, are used to integrate hetero-
geneousdatasourcesdispersed over acomputer network. In order to achievedataintegration, themiddleware
layer imposesagloba dataschemaon top of theindividua schemaused by each source. Through thismech-
anism, the client applicationsbeen serviced by the middleware system are provided with auniform view and
uniform access interface to the data sets stored by each data source. The translation of the dataitems to the
global schema is performed by either a wrapper or database gateway. Wrappers are used when integration
isachieved through amediator system, such as TSIMMIS [CGMHT94], DISCO [TRV96] or Garlic[RS97].
On the other hand, gateways are used when integration is realized by importing the datainto a commercial
DBMS, such as Oracle [Cor99] or Informix [Cor97]. Typicaly, these applications use a connectivity API
such as ODBC or JDBC to extract the data from the sources. The wrapper or gateway can either be run on
amachine near the data source (e.g. on the same Loca Area Network) or at the site where the integration
Server runs.

A prablem with the use of middleware systemsis the deployment of the application-specific data types
and operators necessary to implement the global schema used by the system. Sincenew applicationsand data
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sources are added to the system as time progresses, the globa schema must be changed to reflect these new
additions. And since the datain each source must be translated from its native format into the middleware-
level format specified by the global schema, new data types must be custom-built to represent these datain
the newly introduced format. Notice that these data typeswill be used by the middleware, to hold the values
been processed, and by the client application, to present the result valuesto the user. Moreover, al query
operators that cannot be evaluated by the data sources will have to be implemented at and evaluated by the
middleware system. Therefore, the scalability of the middleware system depends on how efficiently it can
ingest and deploy al this new application-specific functionality to the clients and servers which are part of
the system.

In our view, existing middleware solutionsfail to provide adequate mechanismsto deploy new or updated
functionality to the existing middleware infrastructure. Most systems use either C or C++ as the implemen-
tation language for middleware-level data types and operators. With this approach, the functionality hasto
be ported to severa different hardware and operating system platforms, which can be avery slow and expen-
sive process. In addition, the new code has to be manually installed into every machine in which a client,
mediator, wrapper or gateway application can be expected to be run. Clearly, as the system grows with new
applications, data sources and users, it becomesincreasingly difficult and expensiveto maintain the software
base used throughout the system.

Theaobjective of thispaper isto present anovel metadata-driven framework used to automate the depl oy-
ment of application-specific functionality in amiddleware system. We have implemented this framework in
MOCHA1, a prototype database middleware substrate developed at the University of Maryland. MOCHA
is based on the philosophy that al application-specific code should be automatically deployed by the mid-
dleware system itself. In MOCHA, thisis realized by implementing the new functionality in Java classes,
which are then shipped to the client applications and to remote servers from which data will be extracted.
Thisfeature of automatic code deployment, frees the administratorsfrom having to perform system-widein-
stallationsof software. Instead, all the Javaclasses are stored into one or more code repositoriesfrom which
MOCHA later retrieves and deploysthem on a“need-to-do” basis.

MOCHA not only simplifiesthe administration effort needed to maintain the softwarefor integrating data
sources, but al so providesefficient query services. In[RMR99] we showed that MOCHA leveragesitsability
to ship Java classes implementing query operatorsto execute them near the data source or near the client in
an effort to reduce data movement over the network. Data filtering operators which produce smaller values
are computed near the data source, whiledatainflating operatorswhich expand their argumentsare evaluated
near the client. Using this query optimization framework, MOCHA provides substantial performance gains
on both single-site and multi-site queries containing complex aggregates, predicates and projections.

Inthispaper, wedescribethe componentsin thearchitecture of MOCHA,, and the main services, metadata
elements and software tools necessary to support automatic code deployment. Since metadata and control
must be exchanged between the components of MOCHA, we also present the exchange formats used for
this purpose. These formats are based on the well-accepted XML standard for content exchange between
networked applications. The remaining of this paper is organized as follows. Section 2 presents a brief de-
scription of XML and RDF, Internet standards used for metadata and control exchange in MOCHA. The

MOCHA standsfor Middleware Based On a Code SHipping Architecture.



architecture of MOCHA isdescribed in section 3. In section 4 we discuss the metadata necessary to support
automatic code deployment. Section 5 presents the entire code deployment and query processing cycle used
by MOCHA.. Implementation status and benefits of our approach are presented in section 6. Related work is
briefly described in section 7. Finally, our conclusionsare given in section 8.

2 Overview of XML and RDF

In this section we briefly review XML and RDF, two technol ogies we use to build the framework for auto-
matic deployment of application-specific code.

21 XML
The ExtensibleMarkup Language (XML) [Con9g], is <PhoneBook >
aW3C 2 standard for data exchange over the Internet. <Addr ess>

. . <Nanme>John Smi t h</ Name>
XML isamarkup language derived from SGML, but <Phone>(301) - 403- 0500</ Phone>
withamuch simpler structure. XML isdesignedto en- </ Addr ess>
codethe contentinadocument, and makeit “machine- <Address>

" . . . <Nanme>Adans Mor gan</ Nane>

readable’. Inthisregard, XML isvery different from <Phone>(999) - 201- 8931 </ Phone>
HTML, which is designed to present the content in a </ Addr ess>

document on a Web browser. Figure 1 depicts XML </ PhoneBook>

data encoding a personalized phone book. Aswe can Figure 1: An XML Phone Data,
observe from the figure, XML datais organized as a

series of elements delimited by tags. In this example the tags are PhoneBook, Address, Name and Phone.
Each XML element either encloses another XML element or adatum encoded asastring. Thus, in XML the
schema information and the data are all integrated in the same document. This arrangement is what makes
XML documents machine-readabl e, or self-describing, since applications can parsethe XML document and
find the tags enclosing the data they need to process.

XML is afully extensible language, and the ability of programmers to add new tagsto XML is one of
its most important assets. XML can be customized with new tags that express the data schema for many
applications and provide a mechanism for data exchange specific to these applications. The structure of an
XML document can be validated by the applicationsby using a Document Type Descriptor (DTD). Theseare
grammars which describe the valid structure of a particular XML document. All the above featuresin XML
have caught the attention of major software vendors, which are now targeting XML as the standard for data
interchange used by their products.

22 RDF

TheResource Description Framework (RDF) [Con99b] isan extension of XML designedto providemetadata
interoperability between applications. RDF provides a standard mechanism to encode and exchange meta-
data about any entity of interest to any given application. Each object been described is termed a resource
and is uniquely identified by a Uniform Resource Identifier (URI) [For98].

2W3C standsfor World Wide Web Consortium, which isthebody that directs the efforts to standardize Web-rel ated technol ogies.



<?xm version='""1.0"" ?>

<rdf xmins = **“http://w3.org/ TR 1999/ PR-r df - synt ax- 199901105#" "’
xmns:DC = *“http://purl.org/DC# ' >
<Description about = ‘*http://ww. und. edu/report.htm’'’ >

<DC: Titl e>Annual Report</DC. Title>
<DC: Cr eat or >John Mt e</DC: Creat or >
<DC: Dat e>05- 01- 99</ DC: Dat e>
<DC: Subj ect >UMCP, Uni versity, Governnent </ DC. Subj ect >
</ Description>
</ rdf>

Figure 2: An RDF example

RDF metadata is organized as a set of properties types and values encoded in XML, as shown in Fig-
ure 2. Inthisexample, areport with URI http : //www.umd.edu/report.html is been described. Therdf
and Description tagsareintroduced by RDF to identify the XML elementsthat contain metadata. The at-
tributesxmlns and xmlns : DC are used to identify the namespaces for the tags used in the document. XML
supportsanamespace feature [Con99a] whichisused to givea specific context to thetagscontainedin XML
documents. Each namespace used in an XML document isuniquely identified by aURI. In Figure 2, xm1ns
givesthe namespace for the RDF tags (rdf and Description), and xmlns : DC givesthe namespace for the
Dublin Core tags, which are those that begin with theDC : prefix. The Dublin Core isastandard set of meta-
dataidentifiers used to describe el ectronic documents, such asthose stored in digital libraries. The metadata
shownin Figure 2 indicatesthetitle, author, creation date and general description of the annual report on the
status of the University of Maryland. Clearly, RDF-encoded metadata can be readily used by an application
to discover the information necessary to find documents of interest to the user, and such documents might
reside on the Web, a database server or in the file system of a particular workstation.

3 MOCHA Architecture

In this section, we describe the principal componentsin the architecture of MOCHA. We have implemented
a prototype for MOCHA using the Java programming language, and we have built the system around two
fundamental principles. First, all the code which implements datatypes and query operatorsis automatically
and seamlessly deployed by MOCHA to the clients and serversin the system. Second, all query operators
that are evaluated by the middleware layer are scheduled for execution at the site that results in minimum
data movement over the network.

Figure 3, on page 5, depicts the components in the architecture of MOCHA.. At the top of the architec-
ture is the Client Application, which provides the user with the Graphical User Interface (GUI) to pose
gueries to the system and visualize the result. In most cases, we expect the client to be an applet loaded
into a Web browser, but it is also possible to use a Java stand-alone application. The client connects to the
Query Processing Coordinator (QPC) and sendsto it al queries posed by the user. The QPC is a server
application which providesthe basic query processing servicesin the system, and al so takes care of deploy-
ing al application-specific code necessary to process a query. The client connects to the QPC by means of
aUniform Resource Locator (URL). The main services provided by QPC are: a) query parsing, b) metadata
management, ¢) query optimization, d) code deployment, €) query execution, and f) error management.



In order to access the wealth of information stored in a particul ar data source, the QPC connects to the
Data Access Provider (DAP) associated with the source. The DAP is a server application which extracts
datafrom a source on behalf of the QPC. For each datasource, thereis at least one DAPR, and each DAPinthe
system can be located by QPC through a URL. There are two essential services provided by a DAP: a) data
tranglation, and b) query execution. The DAP extracts requested items from the data source, and translates
themfrom theloca schemaused by the sourceintothe global schemaused by QPC. Also, theDAPiscapable
of executing query operatorsthat generate new abstractionsfrom thedata. In particular, the DAPisdesigned
to execute those operators that filter out the data sets (e.g. a predicate) to produce smaller values. For this
reason, the DAP should be run at the data source site or in close proximity to it (e.g. on another host in the
same LAN). The QPC deliversall the code for the datatypes and operators used by each DAP. Similarly, al
results produced by each DAP are sent to QPC for further processing until the final answer to the query is
fabricated.

The fina component in the MOCHA archi-
tecture is the Data Server, which is the server
applicationthat provides storage for the data sets
stored and mani pul ated by each datasource. Each

Client Client

. i Middleware
DAP in the system must be configured to run on Level

arc —_—
top of aparticular DataServer. MOCHA can sup- Code

Repository

port awidevariety of dataservers, includingdatabase
servers, XML repositories, Web servers and file o " .
servers. Clearly, thearchitectureof MOCHA pro- | : .
vides the foundation for a very flexible, scalable — " — ' Ei
and well-organized middleware solution to inte- Re:fxitwy

grate awiderange of data sources.

N Figure 3: MOCHA Architecture
4 Publishing Resources

In this section we use an exampl e application to describe the capabilitiesincorporated in MOCHA to publish
resources such as tables, query operators and datatypes. For simplicity, we assume that the system follows
the relational model. The capabilities for publishing resources are built on top of RDF and therefore, each
resourceisidentified by aURI. The exact structure of such URI must be chosen by the system administrator,
and should follow the conventions specified in [For98]. In the examples presented in this paper we will use
two simple conventions. First, the URI for arelation will be of the form:

mocha :< host > / < database > / < table >.
The keyword mocha is used as a reminder that the resource been published will be used by MOCHA. The
host component specifies the domain name or | P address of the machine hosting the data source. Similarly,
the database part gives the name of the targeted database space, and table isthe name of the table been
published. The second convention is for data types and operators. For these resources, their URI is of the
form:

mocha :< host > / < repository > / < object >.
Inthisinstance, host isthedomain name or IP address of the machine hostingthe coderepository containing



the Java class for atype or operator. The repository component indicates what code repository must be
accessed to find the Java class associated with the resource. Findly, theobject part givesthe user-specified
name of the resource being published.

MOCHA uses the URI for a resource as
search key into the catalog to find the meta-
data for the resource. The metadata is con-
- tainedin aRDF text document, with aschema

/ : ﬂ e specific to MOCHA. In this schema, all tags

Catalog . . . . e
Management Entries contain the prEﬂX mocha : , which identifies

fool ﬂ the MOCHA namespace3. For each resource,

theadministrator usesan utility applicationpro-

Catalog gram to add the metadata entry, of the form

\ ) (URI,RDF File),intothecata og tablespe-
cifictothetypeof resource. Each entry issent
to the QPC and then added to the catalog, as

Figure 4: Catalog Management illustrated by Figure 4.

Administrator

4.1 Motivating Application

Consider an Earth Science application used to manipulate 2D satellite images and surface maps. The data
sets needed by thisapplication are maintained in two separate data sources. Thefirst datasourceisan Oracle
database server, containing arelation named Maps. This database server runson a host located in the Geog-
raphy Department at the University of Maryland. Relation Maps stores maps from different locationsin the
State of Maryland, and has the foll owing schema:
Maps(name : char(20),location: Rectangle, map : blob);

Attribute name isthe name of aregion, location isthe bounding box for that region and map isthe surface
map for theregion. Thistableis available for access by all users.

The second data source is an Informix database server, which contains arelation named Rasters. This
server ishosted by aworkstationin the Computer Science Department at the University of Maryland. Table
Rasters contains satellite AVHRR images containing weekly energy readings from the surface of the State
of Maryland. There is one year worth of observations stored in relation Rasters, and the schema for this
relationisafollows:

Rasters(week : integer,band: integer,location: Rectangle, image : Raster);
Inthiscase, attributeweek givesthe week number in which theimage was made, band representsthe energy
band measured, 1ocation givesthe boundingbox for theregion under study and image isthe AVHRR image
itself. Thistableisaso availableto al users.

Our example application mainly performs two tasks. First, it computes the composite of all AVHRR
images for a given location within a specific time frame. The SQL query to accomplish thistask is:

3The URI for this namespaceishttp : //www.cs.umd.edu/users /manuel /MOCHA /.



SELECT  location,Composite(image,band)
FROM Rasters

WHERE week BETWEEN t1 AND t2

GROUP BY location

We will identify this query throughout the rest of this paper as Q1. The function Composite() usedin Q1
is auser-defined aggregate, which generates an image that is the composite of a set of AVHRR images.

The second task performed by our applicationisto overlay AVHRR images on top of maps. Specifically,
all thoseimages containing an energy reading larger than an user-specified value X, are overlay on top of the
map for the region to which theimage belongs. In SQL, thistask is specified as follows:

SELECT M.name, R.week, R.location, Overlay(R.image,M.map)
FROM Rasters R, Maps M

WHERE Equal(R.location,M.location)

AND Energy(R.image) > X

This second query will be identified as ()2, and it computes a join between relations Rasters and Maps.
Tuplesarejoined based on whether they haveacommon Location attribute, whichisdetermined by function
Equal(). The average amount of energy in an image is computed by function Energy() and thisvalueis
represented as a double precision floating point number. Finally, function Overlay() creates a new image
by overlaying an AVHRR image on top of amap. All threefunctionsusedin ()2 are user-defined. Giventhis
scenario, we now discuss how to configure MOCHA to provide support for our Earth Science application.

42 Tables

Thefirst resources that must be made available to MOCHA are the tables to be used by the application. For
each table, metadata indicating its name, the database in which it is stored, the columns names and the mid-
dleware types needed to represent each column must be added to the catalog. Thisinformation will enable
MOCHA to accesseach table, retrieveitstupl es, project one or more of itscolumnsand translate each column
valueinto amiddleware data type.

Figure 5 shows the RDF metadata for table Rasters. The URI for thistableis specified by the about
atributein the RDF Description tag. Property mocha : Table gives the name of the relation, and prop-
erty mocha : Owner givesthe email address of its owner. Connectivity information is provided by property
mocha : Database. Thiselement specifiesthe URL of the DAP associated with the datasource (i.e. theIn-
formix Server) and the name of the database spacein whichrelationRasters isstored. Inthiscase, theDAP
islocated at URL cs1.umd.edu : 8000, and table Rasters iscontained in the EarthSciDB space. Each of
thecolumnsinRasters isdescribedinthemocha : Columns property, which containsasequenceof column
descriptions. Each descriptionisdelimited by the1i tag, and for each column, property mocha : Column in-
dicates the column name, mocha : Type givesthe name of the middieware type used to represent its values
and the URI for thisdatatypeis specified by themocha : URI property. Once thisinformationisadded to the
catalog, table Rasters isready to be used in queries posed to the QPC.



<Description about =
“‘nocha://csl. und. edu/ Eart hSci DB/ Rasters'’ >
<mocha: Tabl e> Rasters </mocha: Tabl e>

<li parseType = ‘‘resource’’ >
<mocha: Col um> | ocation </nocha: Col um>
<mocha: Type>Rect angl e</ nocha: Type>

<nmocha: Omer > manuel @s1. umd. edu </ nocha: Oaner > <nmocha: URl >
<nocha: Dat abase> cs1. und. edu: 8000/ Eart hSci DB nocha: cs1. umd. edu/ Eart hSci ence/ Rect angl e
</ mocha: Dat abase> </ mocha: URl >
<mocha: Col ums> <Ii>
<Seq> <l'i parseType = ‘‘resource’’ >
<l'i parseType = '‘resource’’ > <mocha: Col um>i mage</ mocha: Col urm>

<mocha: Col um> week </nocha: Col um>
<mocha: Type> MAnteger </rmocha: Type>

<mocha: Type>Rast er </ mocha: Type>
<mocha: URl >

<mocha: URl > nocha: cs1. und. edu/ Eart hSci ence/ Rast er
nocha; ¢s1. und. edu/ BaseTypes/ MAI nt eger </ mocha: UR >
<I'mocha: UR > <Ii>

<li> <l Seq>

<l'i parseType = '‘resource’’ > </ mocha: Col urms>
<mocha: Col um> band </ mocha: Col um> </ Description>
<mocha: Type> MAnteger </rmocha: Type>
<mocha: URl >
nocha: ¢s1. und. edu/ BaseTypes/ MAI nt eger
<I'mocha: UR >

< i>

Figure 5: Metadata for table Rasters
4.3 User-Defined Operators

As mentioned in section 3, query operators can be executed by the QPC or the DAP, and each of these two
components contains an extensible query execution engine with an iterator-based machinery for data pro-
cessing. Since each operator is dynamically imported into the execution engine, the metadata must provide
enough information to instantiate the operator. In particular, the kind of operator, the number and type of
arguments, and the expected result type must be thoroughly described for the execution engine module. In
MOCHA, query operators are divided into two categories: complex functions and aggregates. We discuss
the metadata structure of these two types separately.

431 Complex Functions

Complex functions are used in complex predicates and projections contained in queries. A complex func-
tionisimplemented in astatic method defined in aJavaclass®. Asdepictedin Figure 6, the execution engine
uses the name of the static method and the class defining this method to create a Function Evaluation Ob-
ject, which takes care of executing the body of the method. This Function Evaluation Object is based on the
Java Reflection Mechanism, which issimilar to the function pointer abstraction usedin C. Astuplesare read
from the data source, the columns used as arguments to the function are extracted and passed to the Function
Evaluation Object. Then, the body of the function is executed and the result is further processed or added to
thefina result.

Figure7 showsthe metadatafor functionEqual( ), whichisused inquery ¢)2 of our example application
(seesection 4.1). Property mocha : Function givesthe name of thefunction and also identifiesthe metadata
block asonefor acomplex function. FunctionEqual() isdefinedin class Geometry.class andimplemented
by the static method Equal, asindicated by themocha : Class andmocha : Method properties, respectively.

4Static methods are those methods whose body can be executed without first creating an object instance from the classin which
the method is defined.
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<Description about = <mocha: Type> Rectangle </mocha: Type>

““nocha: //csl. und. edu/ Eart hSci ence/ Equal ** > <mocha: R >
<mocha: Function> Equal </mocha: Function> mocha: ¢s1. unt. edu/ Eart hSci ence/ Rect angl e
<mocha: 0 ass> Geonetry.class </nocha: 0 ass> <I'mocha: URI >
<mocha: Method> Equal </ mocha: Met hod> <li>
<mocha: Reposi tory> ¢sl. und. edu/ Eart hSci ence <l Seq>
<[ mocha: Reposi tory> </'mocha: Argunent s>
<mocha: Argunent s> <nocha: Resul t >
<Seq> <mocha: Type> MABool ean </ mocha: Type>
<l parseType = '‘resource’’ > <mocha: IR >
<mocha: Type> Rectangle </mocha: Type> mocha: ¢s1. unt. edu/ BaseTypes/ MABool ean
<mocha: IR > </nocha: IR >
mocha: ¢s1. und. edu/ Eart hSci ence/ Rect angl e </'mocha: Resul t >
</mocha: R > <mocha; Creat or > manuel @s1. und. edu </ mocha: Creat or >
i </ Description>
<l parseType = '‘resource’’ >

Figure 7: Metadata for function Equal()

Property mocha : Repository containsthe URL for the code repository containing class Geometry.class.
Thisrepository isnamed EarthScience and resides on host cs1.umd.edu.

Theargumentsto functionEqual( ) arethe
two rectangles to be tested for equality. The

. . Method
metadatafor these arguments are containedin Function Name
Evaluation
Object

amocha : Arguments property. Likein the ’

Java
Class

case for the columnsin atable, the arguments [
arespecified usingtheSeq construct. For each
argument, thename of itstypeisgivenin prop- 7 i
ertymocha : Type, andmocha : URI givesthe Engine
corresponding URI for this type. In similar
fashion, property mocha : Result isused to
describethereturntypeof thefunction. Inthis
case, theresult isaboolean value, whosetype
name and type URI are described by proper-
tiesmocha : Type andmocha : URI, respectively.
Finally, thepersonwho implemented thisfunctionisidentified with his’/her e-mail addressinmocha : Creator.

432 Aggregates

Figure 6: Complex Function Organization

In MOCHA, an aggregate operator isimplemented as an instance of aJavaclass, as shownin Figure 8. Such
class must implement the Aggregate standard interface provided by MOCHA. Thisinterface defines three
methods which are used by the execution engineto evaluate the aggregate operator: Reset( ), Update() and
Summarize(). Theexecution enginewill create an aggregate object for each of the different groups formed
during the aggregation process, and each object isfirst initialized throughacall to method Reset( ). Astuples
areread form the source, method Update( ) isrepeatedly called to update theinternal statein the aggregate.
This update is done based on the existing internal state in the aggregate object and the argument attributes



Aggregate
, Object
Java
Execution Class
Engine

Figure 8: Aggregate Organization

from the next tupleread. Once al tupleshave been ingested, the result in the aggregate object is obtained by
calling method Summarize().

<Description about = <mcha: LR >
““nocha: //csl. umd. edu/ Ear t hSci ence/ Composite’ ' > mocha: cs1. und. edu/ BaseTypes/ MA nt eger
<mocha: Aggregat e> Conposi te </ mocha: Aggregat e> </ mcha: URI >
<mocha: 0 ass> Conposi te. class </mcha: O ass> <li>
<mocha: Reposi tory> cs1. umd. edu/ Eart hSci ence </ Seq>
</'mocha: Reposi tory> </'mocha: Argunent s>
<mocha: Argument s> <mocha: Resul t >
<Seq> <mocha: Type> Raster </mocha: Type>
<li parseType = ‘‘resource’’ > <mocha: R >
<mocha: Type> Raster </mocha: Type> mocha: ¢s1. und. edu/ Eart hSci ence/ Rast er
<mcha: IR > </mocha: IR >
mocha: cs1. umd. edu/ Eart hSci ence/ Rast er </ mocha: Resul t >
</mocha: R > <mocha: Creator > manuel @s1. und. edu </ mocha: Creator >
<Ii> </ Description>

<li parseType = ‘‘resource’’ >
<mocha: Type> MA'nteger </mocha: Type>

Figure 9: Metadata for aggregate Composite()

Figures 9 shows the metadata for aggregate Composite() used in (1. The structure of the metadatais
essentially the same as that for the complex functions, with only two minor differences. First, the name of
the aggregate is given by property mocha : Aggregate. Secondly, property mocha : Method iS not needed,
since the aggregate will be manipulated through the three well-known methods defined in the Aggregate
interface. Aswe can seefrom thefigure, the aggregateisdefined in classComposite.class, whichisstored
inrepository EarthScience. Theaggregatereceivestwo arguments, an AVHRR image and the energy band
measured in theimage, and it returns an AVHRR image, which isthe composite of al theimages processed.

4.4 User-Defined Data Types

From the previous sections, we have seen that most resources depend heavily on data types. In MOCHA,
datatypes are implemented in Java classes, and the type system is organized in a hierarchy shown in Figure

10



10. Theroot element isthe MWOb ject interface which identifiesa Javaclass asimplementing adatatype. In
addition, thisinterface defines the methods necessary to transmit object instances across the network.
Twointerfacesaredirectly derivedfromMW0bject,
namely MWSmal10bject andMWLargeObject. In- =0 Interface
terfaceMWSmal10bject must beimplemented by [ Clas

classes used for small-sized types such as strings, MW SmallObject
numbers, points, rectangles, etc. This interface / \

defines methods to read the values from the data [ Mwsiring |
source, convert the content of atypetoaJavaString Er=

and perform testsfor equality. The semanticsfor
character-based typesareembedded intheMWString | Sring |
interface, andinsimilar fashion, interface MWNumber
contains those for numeric types. On the other Double @

sideof thespectrum, large objectssuch asimages,
videosand text documents are supported through
theMWLargeObject interface. Thisinterfacepro-
vides an abstraction based on filesto support large objects read from the data source and manipulated by the
componentsin MOCHA. Every class used to implement adatatype must either implement MitSmallObject,
MWLargeObject or an interface derived from one of these.

Our exampl e application handles AVHRR images, and Figure 11 presents the metadata for the data type
Raster used to represent them. The RDF property mocha : Type indicatesthat Raster isthe name of the
type for the images. Thistypeis defined in classRaster.class, asindicated by property mocha : Class.
Like in our previous examples, the code repository, in this case EarthScience, is given by the property
mocha : Repository and the developer by property mocha : Creator. Since QPC needs to optimize the
gueries posed by the user, the size (or at least an approximation) of the attributes accessed by the query must
be available to the optimizer to estimate the cost of transferring such attributes over the network. Thisis
provided with property mocha : Size, which indicatesthat the AVHRR images are IMB in size.

Raster

Figure 10: Organization of Data Types

<Description about =

“*nmocha://csl.und. edu/ Eart hSci ence/ Raster’’ >

<nocha: Type> Raster </ nmocha: Type>

<mocha: d ass> Raster.class </npbcha: d ass>

<nocha: Repository> csl. und. edu/ Eart hSci ence

</ mocha: Repository>

<mocha: Si ze> 1MB </ nocha: Si ze>

<nmocha: Creat or > nanuel @s1. und. edu </ nocha: Cr eat or >
</ Description>

Figure 11: Metadata for datatypeRaster
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5 Query Execution Architecture

In this section we describe the query execution architecture used in MOCHA.. Query execution isa process
dividedin six phases: 1) Query Request, 2) Resource Discovery, 3) Query Vaidation, 4) Query Optimization,
5) Code Deployment and 6) Data Processing. We describe each of these phases during the execution of ¢)2.

51 Quey Request

In our example, the client applicationis a Java applet that is loaded from a Web server into a Java-enabled
Web browser. The client applicationfirst opensaconnection, usinga URL, to the QPC for which it hasbeen
configured to communicate with. Inthiscase, the QPC ishosted by the Computer Science Department at the
University of Maryland. Once the connection with the QPC has been established, the client sends a query
request to the QPC. Thisrequest consistsof the SQL string for query ¢)2. The client then waitsfor the QPC
to signal that the query request has been successful, and if so, the client waits for the results to arrive. If
an error condition is signaled by QPC, the client presents the error message to the user. All these tasks are
performed through the Java client APIs provided by MOCHA.

5.2 Resource Discovery

Upon receiving a query request from the client, the QPC must determine from the query what tables must be
accessed, what software must be deployed, and what kind of computational resources (e.g. memory space)
must be allocated to process the query. These tasks are carried out by searching metadata in the catalogs
under the control of the QPC.

For ()2, QPCfirst parsesits SQL string and extractsthefollowinginformation: 1) the name of thetables,
namely Rasters and Maps; 2) the attributes from the records in each table to be manipulated, in this case:

e time, location and raster for tableRasters
e name, location and map for table Maps;

and 3) the user-defined functions used in the query, which are Equal(), Energy() and Overlay().

The next task for QPC isto access the catalogs to find the metadata for theseresources. In turn, thistask
isdivided in two steps. In the first step, QPC accesses an aliases table that contains the mapping between
“common” names for the tables or operators and their corresponding URI. For example, for table Rasters,
thereis an entry of the form:

(Rasters, mocha : csl.umd.edu/EarthSciDB/Rasters).
In the second step, QPC formulates a query to the catal og to extract the metadata for each resource, using the
resource's URI asthe search key. QPC searches for metadatain thefollowing order: 1) Tables, 2) Operators
and 3) Data Types. In )2, QPC first finds the metadata for tables Rasters and Maps. These metadata are
immediately processed to extract al pertinent information about the tables (i.e. the URL for the DAP asso-
ciated with each data source). In addition, QPC extracts from the metadata the URIs of the data types used
to represent the columns in each table, and storesthese URIsin alist.

After themetadatafor thetabl eshave beeningested, the QPC searchesthemetadatafor functionsEqual(),
Energy()andOverlay(). Likebefore, QPC processesthe metadatafor thesefunctionsand extractsthe URIs
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for al the datatypes used in the functions and storesthem in thelist previously created. Finally, the QPC it-
eratesover thelist of URIsfor datatypesand findsthe metadatafor each datatype necessary to process query
Q2. All the metadata found by this processis kept in memory for use during the remaining four phases of
guery execution. Clearly, after this phase the QPC has gathered enough information to fully interpret the
structure and expected behavior of the resourcesthat it is about to utilize.

5.3 Query Validation

After gathering the metadata necessary to interpret query ¢)2, QPC validates the query to guaranteeits cor-
rectness. First, QPC checks whether tablesRasters and Maps exist and if they can be accessed by the user
who posed query 2. Next, QPC findsif attributesR.time, R.1ocation, R.raster, M.name, M.location
and M.map appear in the records stored in Rasters and Maps. Finadly, QPC determinesif the arguments to
functionsEnergy( ), Equal() and Overlay() are of the correct types. If no error is discovered during the
validation process, the query request is accepted for evaluation and the QPC signals the client application.
If QPC finds any error during the validation process, it creates a message explaining the causes of the error.
This message is sent to the client application to inform the user about the error condition and have her/him
take a corrective action.

Coming back to our example, we can seethat the validation of query )2 yieldsno error. TablesRasters
and Maps exist and are accessible by all users. All attributes used in the query are al valid since they are
defined as part of the schema for tablesRasters and Maps. Function Equal() receives as arguments the
location attributesin each of the records from the tablesto be joined, and these are the correct arguments
for thisfunction. Similarly, functionEnergy( ) receivesasargument an AV HRR image, whichistheexpected
argument type. Finally, Overlay() receives its expected arguments, an AVHRR image and amap. QPC is
now ready to move to the next step: finding the best plan to process ¢)2.

54 Query Optimization

In MOCHA, query optimizationisbased on the principlethat code isless bulky and far more efficient to ship
than data. Therefore, MOCHA capitalizes onthe migration of codeand the“plug & play” feature of the Java
platform. Thisisanove and unique approach in query optimization, since code deployment isincorporated
with other well-known techni quesfor finding the plan which minimizesthe execution time needed to process
aquery, and the amount of datatransferred between QPC and the DAPs. In MOCHA, operators are shipped
to and executed at the site which results in minimum data movement. Operators that reduce or filter the
data sets to produce a smaller abstraction, called data-reducing, are computed by the DAPs associated with
the data sources. For example, predicate Energy(R.raster) > X in 2 is data-reducing since it removes
unnecessary tuplesfromtableRasters. Similarly, aggregate Composite(raster,band)in()1 (seesection
4.1) isdata-reducing since it maps a sets of AVHRR images into just one image.

Onthe other hand, operatorsthat increase the size of the data sets are called data-inflatingand are evalu-
ated by the QPC. For example, supposethat an additional projectionoperator named IncrRes(R.raster, 2X)
isadded to ()2, and this operator increases the resol ution of each image by a factor 2X. Thisnew projection
isdata-inflating sinceit generates a new AVHRR image with twice the resolution and four times the size of
the original. The details of query optimizationin MOCHA can be found in [RMR99].
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Figure 12: Plan for ¢)2.

Figure 12 showsthe plan to be used by MOCHA for ¢)2. In MOCHA, the join node is evaluated by the
integration server, namely QPC, and the scan nodes by the data sources. The inputs for the join operator,
are two semi-join (SMJ) operators. Theleft input is the semi-join RastersxMaps, which is computed by
the DAP for the Informix Server, and the right input is the semi-join MapsxRasters, which is computed
by the DAP for the Oracle Server. Notice that before computing the semi-join RastersixMaps, the DAP
filtersrelation Rasters with predicate Energy(R.raster) > X. Once the join between relationsRasters
and Maps iscompleted, function Overlay() isevaluated and all the projections are taken.

5.5 Code Deployment

Client

Once the QPC has determined the plan P,
to solve the query at hand, in this case ()2, its
next task isthe automatic deployment of al the

QPC

— & 5

Code
Repository

g

DAP

classesthat implement each of thedatatypesand

Oracle

DAP

Informix

Figure 13: Automatic Code Deployment

operators used in the query. In MOCHA, this
processiscalled thecodedeployment phase. As
illustratedin Figure 13, QPC retrieveseach class
for its code repository and shipsit to the other
components that require it. The client applica-

tionandthe DA Pswill receive only thoseclasses
that each requires, as specified in the operator
schedul e contained in the query plan P.
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procedure MOCHA _DeployCode:
/* deploys classes for resources R */

1) for each i € R do

2)  entry= findEntry(i, M)

3)  repository = get Repository(entry)

4)  name = getClassName(entry)

5  class = getClassFile(name, repository)
6) S =getTargetSites(i, P)

7) foreachj e Sdo

8) shipRDF (entry, j)

9) shipClass(class, j)

Figure 14: Code Deployment Algorithm.

Figure 14 presents the agorithm used by QPC to deploy all the Java classes. The agorithm receives
three input parameters: 1) R - alist with the URIs for the operators and data types used in the query, 2)
M - astructure containing all the metadata for the query, and 3) P - the execution plan for the query. The
algorithm iterates over the list of resources R as follows. First, the entry with the metadata for the current
URI z isfetched from A . Next, the name of the repository containing the Java class implementing resource
¢ isfound. In step (4), the name of the Java class for resource : is determined. With this information the
algorithm uses step (5) to retrieve the Java class file for resource ¢ from the code repository. Then, the set
S of all siteswhich require the class for resource: is determined from the query plan P by calling function
getTargetSites() in step (6). Having found the target sites, the algorithm iterates over .5, and ships the
metadata and Java class file for resource ¢ to each site. Notice that in step (8) the metadata is converted to
RDF format and then transmitted to the target site. Once the site receives the class file, it loads it into the
JavaVirtua Machine, and the resource becomes available for use. Notice that this entire process has been
completely done by the QPC and totally driven by the metadataretrieved from the catalog. Thereisno human
involvement of any kind, and therefore the functionality has been automatically deployed by MOCHA.

For query )2, the code deployment phase unfolds as follows. The classes for the data types used in
columnsR.week, R.1ocation and R.raster are ship to the DAPfor the Informix server. QPC aso shipsto
ittheclassesfor functionsEqual() andEnergy( ). Next, QPC shipsthe classesfor thetypesused in columns
M.name, M.location and M.map tothe DAPfor the Oracle Server. In addition, thisDAP receivesthe classfor
function Equal(). Finaly, QPC shipsthe classes for the columns projected in the query result to the client
application. Notice that since QPC has found al the functionality for the query, it can simply load al the
Java classes it needs into its run time system. In the case of ()2, it needs all the classes for the columnsin
each table, plus the classes for functionsEqual() and Overlay(). Once each component has extended its
guery execution capabilities, the query is ready to be solved.

5.6 DataProcessing

Once the plan to process the query is chosen and all the necessary code has been deployed, the QPC will
the start the execution of the query. QPC sendsto the DAPs the sub-plan(s) that each DAP must execute and
request each DAPto create an iterator to evaluate the sup-plan(s). InMOCHA, sub-plansare a so encoded as
XML documents, since thisapproach frees the devel oper of the DAP from theinconvenience of learning the
specific protocol and APIs used to exchange the plans between the QPC and the DAPs. Also, this approach
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providesinteroperability for control exchange. The XML document for aplan is simply parsed at the DAP
and converted to the data structure that better fits the needs of the DAP been devel oped.

<plan> <colname>R.raster</colname>
<tables> </projection>
<table>Rasters R</table> </projections>
</tables> <restrictions>
<columns> <cluase>
<column>R.week</column> <GT>
<column>R.location</column>> <arg>
<column>R.raster</column>> < operator>Energy< /operator>
</columns> <arg>
<constants> <column>R.raster</column>>
<const> X </const> </arg>
</constants> </arg>
<operators> <arg>
<operator> Energy </operator> <const> X </const>
< /operators> </arg>
<projections>> </GT>
<projection> </clause>
<colname>R.week</colname> </restrictions>
</projection> </plan>

<projection>
<colname>R.location</colname>>

</projection>

<projection>

Figure 15: Encoding of Query Plan

Figure 15illustratesthe XML encoding for the Select nodein the plan for query ()2 that was presented
in section 5.4. The elements with tags tables, columns, constants and operators form the preamble
of plan. This preamble and the metadata received from the QPC are used by the execution engine to cre-
ate all the data structures necessary to build the local representation of the query plan that the DAP will
use. The elementswith tags tables and columns are used by the DAP to create a SQL string that will be
passed to the Informix Server to extract all the columns from tuplesin Rasters that will be processed. The
constants used in the query are contained in element constants and the DAP will create object instances
with the values for these constants. This task, however, will be postponed until the projection and restric-
tion clauses are processed since the type for the constants will be inferred from these expressions. In the
meantime, the DAP creates the appropriate object to evaluate each of the operators specified by the element
with tag operators. Recall that the structure of these objects was discussed in sections 4.3.1 and 4.3.2.
The attributes to be projected and passed to the next node in the query tree are given in the projections
element. These attributes are extracted from tuples that satisfy the restriction clauses contained in element
restrictions. Therestrictions element iscomposed of conjunctionsobtained from the WHERE clause
of the query.

Once dl the data structures are in place, data processing begins. As shown in Figure 16, each DAP
uses the JDBC AP to extract the tuples from the Informix and Oracle servers. The DAP for the Informix
server filtersal the tuples been read by using the expression Energy(R.raster) > X. All the tupleswhich
satisfy this expression are then used for the semi-join RastersixMaps. In this semi-join, the expression
Equal(R.location,M.location) isused as the semi-join predicate. After thissemi-join is computed the
tupleswith attributesR.location, R.week and R.raster are sent to the QPC and stored to disk. Inasimilar
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Figure 16: Data Processing

fashion, the DAP for the Oracle database server extracts the data from the database, computes the semi-join
MapsRasters and sendsthetupleswith attributesM.name, M.1location and M.map to the QPC, wherethey
arematerialized to disk. Finally, the QPC joinsthe two resultsreceived from the DAPs, performsthe overlay
operation using function Overlay( ), and projectsthe attributesfor theresult. All resultsare then send to the
client application for visualization purposes.

6 Discussion

In this section we describe the main benefits of MOCHA and the status of the current implementation of the
system.

6.1 Benefitsof MOCHA

In the MOCHA architecture there is a clear specification of the services to be provided by each component
in the system. The most important benefits provided by MOCHA are:

1. Middle-tier Solution - InMOCHA, theclient application doesnot connect to the datasourcesdirectly.
Instead, the client leverages the services provided by the middle-tier software layer composed of the
QPC and the DAPs. With this approach, clients can be kept as simple as possible, since there is no
need to integrate into them the routines necessary to access each data source. Thisaso makes clients
easier and inexpensiveto set up and maintain.

2. Minimum Changes on Existing Servers - MOCHA does not require data to be moved from an ex-
isting and adequate data server into a new and possibly different server just for the purpose of inter-
operability. Instead, the middle-tier layer is configured to provide connectivity and remote access to
the data sets stored in the existing server. Thereisno need to perform costly and error-prone upgrades
on the existing servers participating in the distributed system. Thus, existing software is reused and
interoperability is till achieved.
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3. Extensibility - New application-specific software implementing additional features, such as complex
types, search operators and numeric aggregates, can be added to MOCHA after it has been deployed.
The systemis not static, rather it can be extended with additional functionality that is required to sup-
port the needs of new applications. Thus, the system can evol veto accommodate the changing require-
ments of users.

4. CodeReusability - MOCHA isimplemented in the Javaprogramming languageand, asresult, all soft-
ware used in MOCHA isindependent of the computer platform being used at any particul ar data center
or client site. MOCHA can support avast array of hardware platforms, ranging from desktop PCs to
multi-processor workstations. Thus, there is no need to perform expensive and time-consuming ports
of the software to different platforms. Instead, the software is written once, and then used anywhere
inthe system. Also, the cost of software maintenance can be significantly reduced since only one port
of the softwareis needed.

5. Automatic, Plug-&-Play Code Deployment - MOCHA automatically and seamlessly deploys all
the code implementing the application-specific functionality used to process the queries posed to the
system. There is no need for the end-users or administrators to make system-wide installations of
application-specific software, since MOCHA extracts all code from the code repositories and deploys
it as needed and where it is needed.

6. Efficient Query Evaluation - MOCHA leverages automatic code deployment in order to provide an
efficient query processing service based on data movement reduction. The code and the computation
for each of the operatorsin a query are shipped to and performed at the site which resultsin minimum
data movement over the computer network. This approach not only reduces thetimeit takes to solve
aquery, but also increases the query throughput of the system.

7. XML -based M etadata - Instead of creating yet another language to represent metadata, MOCHA uti-
lizesthewell-accepted XML and RDF standardsand leveragesthe avail ability of their tools. A schema
with the appropriatetagsis provided by MOCHA to encode and exchange metadata between the com-
ponentsin the system.

8. XML -based Control - Rather than inventing a new control protocol and forcing developersto learn
the datastructures, formats and APIs needed toimplement it, MOCHA encodesall control information
asan XML document. A DTD is provided to specify the structure of the plans that must be followed
by each DAP during query processing. The developer of a DAP is free to use whatever mechanism
he/she prefers to implement the query plan insidethe DAP.

9. Standard Interfaces - In MOCHA, al the data types and operators are handled by the client, QPC
and DAPs through well-known interfaces. Thereis no need to “hard code” any routine to manipulate
a data type or operator. Instead, each class implementing one of these resources simply customizes
the methods in the appropriate interface to work according to the semantics of the particular type or
operator.

In summary, this framework providesthe foundation for a scalable, robust, extensible and efficient middle-
tier solution for the data integration and interoperability problems faced by many enterprises.
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6.2 Implementation Status

We haveimplemented MOCHA using Sun’s JavaDevel opersKit (JDK), version 1.2. We used Oracle' s Java
XML parser to manipulate all the XML documents accessed by the QPC and DAP. The current version of
MOCHA includes a DAP for the Informix Universal Server, a DAP for the Oracle 8 Universal Server and
one DAPfor an XML repository. We have loaded the Informix Universal Server with datafrom the Sequoia
2000 Benchmark [Sto93]. Thisbenchmark contains data sets with polygons, points, rectangles and AVHRR
raster images, all of which were abtained from the US Geological Survey. The Oracle 8 Server was loaded
with data sets describing weather forecast images for the Washington Metropolitan Area, which are stored
in a Web server. Finally, the XML repository contains forecast temperatures for severa of the major cities
in the United States. All three of these data sources are hosted at the Department of Computer Science, Uni-
versity of Maryland, College Park. We have also performed extensive measurements on the performance of
MOCHA, using the Informix Server and the Sequoia 2000 Benchmark [Sto93]. The results of these mea-
surements on MOCHA can be found in [RMR99].

7 Related Work

Middleware systems have been used as the software layer that attemptsto overcome the heterogeneity prob-
lem faced when data is dispersed across different data sources. The goal is to shield the applications from
the differencesin the datamodel's, services and access mechanisms provided by each datasource. Typicaly,
middleware comesin two flavors: database gateways and mediator systems. Database gateways are used to
import datafrom a particular data source into a production DBM S made by a different vendor. The gateway
provides a data channel between both systems, and therefore, a different gateway is need for each of the dif-
ferent data sources accessed by the DBMS. Some examples of commercia database gateway products are
Oracle Transparent Gateways [Cor99] and the Informix’s Virtua Table API [Cor97].

The other kind of middleware systemis the mediator system. Here amediator application isused asthe
integration server and the data sources are accessed through wrappers. The mediator providesvery sophisti-
cated servicesto query multipledatasourcesand integratetheir datasets. Typically, an object-oriented global
dataschemaisimposed on top of the schemas used by theindividual datasources. Examplesof mediator sys-
tems are TSIMMIS [CGMH™94], DISCO [TRV96] and Garlic [RS97]. The work in [dFRH98] considered
some of theissues and tradeoffs between the use of gateways or mediator systems.

All these middleware sol utionsrequire the administratorsto manually install all the necessary function-
ality for query processing into every sitewhereit is needed. In addition, these systems use ad-hoc or propri-
etary metadata and control exchange protocols, which make it difficult for third-party developersto create
compatible and interoperabl e software modul es for these systems.

8 Conclusions

In this paper we have proposed a novel metadata-driven framework implemented in MOCHA to automati-
cally and seamlessly deploy all application-specific code used during query processing. We have identified
the major drawbacks of existing middleware schemes, namely the cost and complexity of porting, manually
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installing and maintaining middleware code system-wide, and the inability to scale to alarge popul ation of
clientsand servers.

In contrast, MOCHA leverages Java, XML and RDF technol ogiesto providearobust, efficient and scal-
able solution in which the functionality is automatically deployed. All the code for data types and query
operators is implemented in Java classes, which are stored in code repositories. For each query, MOCHA
finds and retrieves al the necessary classes from the code repositories, and ships these classes to the sites
that require them. Metadata is used not only to understand the behavior of each type or operator, but aso to
guide the entire code deployment process. The metadata and control exchange between the componentsin
MOCHA isrealized through the well-accepted XML and RDF standards. Futurework includesthe devel op-
ment of XM L-based descriptions of data source capabilities and query plansfor non-traditional data sources
such as semi-structured databases.
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