Skip to main content

An \( \mathcal{O} \) ((n · log n)3)-Time Transformation from Grz into Decidable Fragments of Classical First-Order Logic

  • Conference paper
  • First Online:
Automated Deduction in Classical and Non-Classical Logics (FTP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1761))

Included in the following conference series:

Abstract

The provability logic Grz is characterized by a class of modal frames that is not first-order definable. We present a simple embedding of Grz into decidable fragments of classical first-order logic such as FO2 and the guarded fragment. The embedding is an \( \mathcal{O} \) ((n:log n)3)-time transformation that neither involves first principles about Turing machines (and therefore is easy to implement), nor the semantical characterization of Grz (and therefore does not use any second-order machinery). Instead, we use the syntactic relationships between cut-free sequent-style calculi for Grz, S4 and T. We first translate Grz into T, and then we use the relational translation from T into FO2.

Supported by an Australian Research Council Queen Elizabeth II Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abadi and Z. Manna. Modal theorem proving. In J. H. Siekmann, editor, CADE-8, pages 172–189. Springer Verlag, LNCS 230, 1986.

    Google Scholar 

  2. H. Andreka, I. Nemeti, and J. van Benthem. Modal languages and bounded fragments of predicate logic. Journal of Philosophical Logic, 27(3):217–274, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Avron. On modal systems having arithmetical interpretations. The Journal of Symbolic Logic, 49(3):935–942, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Belnap. Display logic. Journal of Philosophical Logic, 11:375–417, 1982.

    MATH  MathSciNet  Google Scholar 

  5. J. van Benthem. Modal logic and classical logic. Bibliopolis, 1983.

    Google Scholar 

  6. J. van Benthem. The Range of Modal Logic-An Essay in Memory of George Gargov. Journal of Applied Non-Classical Logics, 1999. To appear.

    Google Scholar 

  7. Ph. Balbiani and A. Herzig. A translation from the modal logic of provability into K4. Journal of Applied Non-Classical Logics, 4:73–77, 1994.

    MATH  MathSciNet  Google Scholar 

  8. G. Boolos. The Logic of Provability. Cambridge University Press, 1993.

    Google Scholar 

  9. S. Cerrito and M. Cialdea Mayer. A polynomial translation of S4 into T and contraction-free tableaux for S4. Logic Journal of the IGPL, 5(2):287–300, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Chagrov and M. Zakharyaschev. Modal Logic. Clarendon Press, Oxford, 1997.

    MATH  Google Scholar 

  11. S. Demri and R. Goré. An \( \mathcal{O} \) ((n:log n)3)-time transformation from Grz into decidable fragments of classical first-order logic. In 2nd International Workshop on First-Order Theorem Proving, Vienna, pages 127–134. TUWien Technical Report E1852-GS-981, 1998.

    Google Scholar 

  12. S. Demri and R. Goré. Theoremhood preserving maps as a characterisation of cut elimination for provability logics. Technical Report, A.R.P., A.N.U., 1999. Forthcoming.

    Google Scholar 

  13. G. d’Agostino, A. Montanari, and A. Policriti. A set-theoretical translation method for polymodal logics. Journal of Automated Reasoning, 15:317–337, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Fitting. Proof methods for modal and intuitionistic logics. D. Reidel Publishing Co., 1983.

    Google Scholar 

  15. M. Fitting. First-order modal tableaux. Journal of Automated Reasoning, 4:191–213, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. FÜrer. The computational complexity of the unconstrained limited domino problem (with implications for logical decision problems). In Logical machines: Decision problems and complexity, pages 312–319. LNCS 171, Springer-Verlag, 1981.

    Google Scholar 

  17. R. Goré, W. Heinle, and A. Heuerding. Relations between propositional normal modal logics: an overview. Journal of Logic and Computation, 7(5):649–658, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Ganzinger, U. Hustadt, C. Meyer, and R. Schmidt. A resolution-based decision procedure for extensions of K4. In 2nd Workshop on Advances in Modal Logic (AiML’98), Uppsala, Sweden, 1998. to appear.

    Google Scholar 

  19. R. Goré. Cut-free sequent and tableau systems for propositional Diodorian modal logics. Studia Logica, 53:433–457, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  20. R Goré. Tableaux methods for modal and temporal logics. In M. d’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors, Handbook of Tableaux Methods. Kluwer, Dordrecht, 1999. To appear.

    Google Scholar 

  21. A. Herzig. Raisonnement automatique en logique modale et algorithmes d’unification. PhD thesis, Université P. Sabatier, Toulouse, 1989.

    Google Scholar 

  22. J. Hudelmaier. Improved decision procedures for the modal logics K, T and S4. In H. Buning, editor, Computer Science Logic (CSL’95), pages 320–334. LNCS 1092, Springer-Verlag, 1996.

    Google Scholar 

  23. R. Ladner. The computational complexity of provability in systems of modal propositional logic. SIAM Journal of Computing, 6(3):467–480, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  24. H. Lewis. Complexity results for classes of quantificational formulas. Journal of Computer and System Sciences, 21:317–353, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  25. G. Mints. Gentzen-type and resolution rules part I: propositional logic. In P. Martin-Löf and G. Mints, editors, International Conference on Computer Logic, Tallinn, pages 198–231. Springer Verlag, LNCS 417, 1988.

    Google Scholar 

  26. M. Mortimer. On language with two variables. Zeitschrift für Mathematik Logik und Grundlagen der Mathematik, 21:135–140, 1975.

    MATH  MathSciNet  Google Scholar 

  27. Ch. Morgan. Methods for automated theorem proving in non classical logics. IEEE Transactions on Computers, 25(8):852–862, 1976.

    Article  MATH  Google Scholar 

  28. H. de Nivelle. A resolution decision procedure for the guarded fragment. In C. Kirchner and H. Kirchner, editors, CADE-15, Lindau, Germany, pages 191–204. LNAI 1421, Springer-Verlag, 1998.

    Google Scholar 

  29. A. Nonnengart. Resolution-based calculi for modal and temporal logics. In M. McRobbie and J. Slaney, editors, CADE-13, pages 599–612. LNAI 1104, Springer-Verlag, 1996.

    Google Scholar 

  30. H.J. Ohlbach. A resolution calculus for modal logics. PhD thesis, FB Informatik Univ. of Kaiserslautern, 1988.

    Google Scholar 

  31. H.J. Ohlbach. Optimized translation of multi modal logic into predicate logic. In A. Voronkov, editor, LPAR’93, pages 253–264. Springer-Verlag, LNAI 698, 1993.

    Google Scholar 

  32. H. J. Ohlbach. Combining Hilbert style and semantic reasoning in a resolution framework. In C. Kirchner and H. Kirchner, editors, CADE-15, Lindau, Germany, pages 205–219. LNAI 1421, Springer-Verlag, 1998.

    Google Scholar 

  33. M. Ohnishi and K. Matsumoto. Gentzen method in modal calculi. Osaka Mathematical Journal, 9:113–130, 1957.

    MATH  MathSciNet  Google Scholar 

  34. Ch. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company, 1994.

    Google Scholar 

  35. W. Rautenberg. Modal tableau calculi and interpolation. The Journal of Philosophical Logic, 12:403–423, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  36. R. Schmidt. Optimised Modal Translation and Resolution. PhD thesis, Fakultät der Universität des Saarlandes, 1997.

    Google Scholar 

  37. R. Solovay. Provability interpretations of modal logics. Israel Journal of Mathematics, 25:287–304, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  38. M. Vardi. Why is modal logic so robustly decidable? In Descriptive complexity and finite models, A.M.S., 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demri, S., Goré, R. (2000). An \( \mathcal{O} \) ((n · log n)3)-Time Transformation from Grz into Decidable Fragments of Classical First-Order Logic. In: Caferra, R., Salzer, G. (eds) Automated Deduction in Classical and Non-Classical Logics. FTP 1998. Lecture Notes in Computer Science(), vol 1761. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46508-1_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-46508-1_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67190-9

  • Online ISBN: 978-3-540-46508-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics