Skip to main content

Almost Complete Sets

  • Conference paper
  • First Online:
STACS 2000 (STACS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1770))

Included in the following conference series:

Abstract

We show that there is a set which is almost complete but not complete under polynomial-time many-one (p-m) reductions for the class E of sets computable in deterministic time 2lin. Here a set A in a complexity class C is almost complete for C under some reducibility r if the class of the problems in C which do not r-reduce to A has measure 0 in C in the sense of Lutz’s resource-bounded measure theory. We also show that the almost complete sets for E under polynomial-time bounded one-one length-increasing reductions and truth-table reductions of norm 1 coincide with the almost p-m-complete sets for E. Moreover, we obtain similar results for the class EXP of sets computable in deterministic time 2poly.

Supported by Marie Curie Fellowship ERB-FMBI-CT98-3248.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Allender and M. Strauss. Measure on small complexity classes with applications for BPP. In: Proceedings of the 35th Annual IEEE Symposium an Foundations of Computer Science, p.867–818, IEEE Computer Society Press, 1994.

    Google Scholar 

  2. K. Ambos-Spies, S. Lempp, and G. Mainhardt. Randomness vs. completeness: on the diagonalization strength of resource bounded random sets. In: Proceedings of the 23rd International Symposium on Mathematical Foundations of Computer Science, p. 465–473, Lecture Notes in Computer Science, Vol. 1450, Springer, 1998.

    Google Scholar 

  3. K. Ambos-Spies and E. Mayordomo. Resource-bounded measure and randomness. In: A. Sorbi (ed.), Complexity, logic, and recursion theory, p.1–47. Dekker, New York, 1997.

    Google Scholar 

  4. K. Ambos-Spies, E. Mayordomo and X. Zheng. A comparison of weak completeness notions. In: Proceedings of the 11th Annual IEEE Conference on Computational Complexity, p.171–178, IEEE Computer Society Press, 1996.

    Google Scholar 

  5. K. Ambos-Spies, H.-C. Neis and S. A. Terwijn. Genericity and measure for exponential time. Theoretical Computer Science, 168:3–19, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Ambos-Spies, S. A. Terwijn and X. Zheng. Resource bounded randomness and weakly complete problems. Theoretical Computer Science, 172:195–207, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity, volume I. Springer-Verlag, 1995.

    Google Scholar 

  8. L. Berman. Polynomial reducibilities and complete sets. Ph.D. thesis, Cornell University, 1977.

    Google Scholar 

  9. H. Buhrman, D. van Melkebeek, K. Regan, D. Sivakumar, M. Strauss. A generalization of resource bounded measure, with application to the BPP vs. EXP problem. In: Proceedings of the 15th Annual Symposium on Theoretical Aspects of Computer Science, p.161–171, Lecture Notes in Computer Science, Vol. 1373, Springer, 1998.

    Google Scholar 

  10. S. Homer, S. Kurtz and J. Royer. On 1-truth-table-hard languages. Theoretical Computer Science, 115:383–389, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  11. D. W. Juedes. Weakly complete problems are not rare. Computational Complexity, 5:267–283, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  12. D. W. Juedes and J. H. Lutz. The complexity and distribution of hard problems. SIAM Journal on Computing, 24:279–295, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. W. Juedes and J. H. Lutz. Weak completeness in E and E 2. Theoretical Computer Science, 143:149–158, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences, 44:220–258, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. H. Lutz. Weakly hard problems. SIAM Journal on Computing 24:1170–1189, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. H. Lutz. The quantitative structure of exponential time. In: Hemaspaandra, Lane A. (ed.) et al., Complexity theory retrospective II, p.225–260. Springer, New York, 1997.

    Google Scholar 

  17. E. Mayordomo. Almost every set in exponential time is P-bi-immune. Theoretical Computer Science, 136:487–506, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  18. K. Regan, D. Sivakumar and J.-Y. Cai. Pseudorandom generators, measure theory and natural proofs. In: Proceedings of the 36th Annual IEEE Symposium an Foundations of Computer Science, p.171–178, IEEE Computer Society Press, 1995.

    Google Scholar 

  19. K. Regan, D. Sivakumar. Improved Resource-Bounded Borel-Cantelli and Stochasticity Theorems. Technical Report UBCS-TR 95-08, Department of Computer Science, State University of New York at Buffalo, 1995.

    Google Scholar 

  20. O. Watanabe. A comparison of polynomial time completeness notions. Theoretical Computer Science, 54:249–265, 1987.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ambos-Spies, K., Merkle, W., Reimann, J., Terwijn, S.A. (2000). Almost Complete Sets. In: Reichel, H., Tison, S. (eds) STACS 2000. STACS 2000. Lecture Notes in Computer Science, vol 1770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46541-3_35

Download citation

  • DOI: https://doi.org/10.1007/3-540-46541-3_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67141-1

  • Online ISBN: 978-3-540-46541-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics