Skip to main content

Characterizing and Deciding MSO-Definability of Macro Tree Transductions

  • Conference paper
  • First Online:
STACS 2000 (STACS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1770))

Included in the following conference series:

Abstract

A macro tree transduction is MSO definable if and only if it is of linear size increase. Furthermore, it is decidable for a macro tree transduction whether or not it is MSO definable.

This work was supported by the EC TMR Network GETGRATS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. V. Aho and J. D. Ullman. Translations on a context-free grammar. Inform and Control, 19:439–475, 1971.

    Article  MathSciNet  Google Scholar 

  2. R. Bloem and J. Engelfriet. A comparison of tree transductions defined by monadic second order logic and by attribute grammars. Technical Report 98-02, Leiden University, 1998. To appear in J. of Comp. Syst. Sci.

    Google Scholar 

  3. B. Courcelle and P. Franchi-Zannettacci. Attribute grammars and recursive program schemes. Theoret. Comput. Sci., 17:163–191 and 235–257, 1982.

    Article  MathSciNet  Google Scholar 

  4. B. Courcelle. Monadic second-order definable graph transductions: a survey. Theoret. Comput. Sci., 126:53–75, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Courcelle. Structural properties of context-free sets of graphs generated by vertex replacement. Inform. and Comput., 116:275–293, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Drewes and J. Engelfriet. Decidability of finiteness of ranges of tree transductions. Inform. and Comput., 145:1–50, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Drewes. The complexity of the exponential output size problem for top-down tree transducers. In G. Ciobanu and Gh. PĂun, editors, Proc. FCT 99, volume 1684 of LNCS, pages 234–245. Springer-Verlag, 1999.

    Google Scholar 

  8. J. Engelfriet and S. Maneth. Macro tree transducers of linear size increase. In preparation, http://www.wi.leidenuniv.nl/~maneth/LSI.ps.gz.

  9. J. Engelfriet and S. Maneth. Macro tree transducers, attribute grammars, and MSO definable tree translations. Inform. and Comput., 154:34–91, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Engelfriet, G. Rozenberg, and G. Slutzki. Tree transducers, L systems, and two-way machines. J. of Comp. Syst. Sci., 20:150–202, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Engelfriet and H. Vogler. Macro tree transducers. J. of Comp. Syst. Sci., 31:71–146, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  12. Z. Fülöp and H. Vogler. Syntax-Directed Semantics — Formal Models based on Tree Transducers. EATCS Monographs on Theoretical Computer Science (W. Brauer, G. Rozenberg, A. Salomaa, eds.). Springer-Verlag, 1998.

    Google Scholar 

  13. F. Gécseg and M. Steinby. Tree automata. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages. Vol. 3. Chap. 1. Springer-Verlag, 1997.

    Google Scholar 

  14. N. Klarlund and M. I. Schwartzbach. Graphs and decidable transductions based on edge constraints. In S. Tison, editor, Proc. CAAP 94, volume 787 of LNCS, pages 187–201. Springer-Verlag, 1994.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Engelfriet, J., Maneth, S. (2000). Characterizing and Deciding MSO-Definability of Macro Tree Transductions. In: Reichel, H., Tison, S. (eds) STACS 2000. STACS 2000. Lecture Notes in Computer Science, vol 1770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46541-3_45

Download citation

  • DOI: https://doi.org/10.1007/3-540-46541-3_45

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67141-1

  • Online ISBN: 978-3-540-46541-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics