
Lecture Notes in Computer Science 1750
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Donald E. Knuth

MMIXware

A RISC Computer
for the Third Millennium

13

Author

Donald E. Knuth
Computer Science Department
Stanford University
Stanford, CA 94305-9045, USA

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-540-66938-8 e-ISBN 978-3-540-46611-6
DOI 10.1007/3-540-46611-8
Springer Heidelberg New York Dordrecht London

LNCS Sublibrary: SL 2 – Programming and Software Engineering

The following copyright notice is included in all files of the MMIXware package:

© 1999 Donald E. Knuth
This file may be freely copied and distributed, provided that no changes whatsoever are made. All users
are asked to help keep the MMIXware files consistent and "uncorrupted," identical everywhere in the
world. Changes are permissible only if the modified file is given a new name, different from the names
of existing files in the MMIXware package, and only if the modified file is clearly identified as not
being part of that package. (The CWEB system has a "change file" facility by which users can easily
make minor alterations without modifying the master source files in any way. Everybody is supposed
to use change files instead of changing the files.) The author has tried his best to produce correct and
useful programs, in order to help promote computer science research, but no warranty of any kind
should be assumed.

Usage of those files in derived works is otherwise unrestricted.

All portions of the present book that are not distributed as part of the MMIXware files are copyright
© 1999, corrected printing 2014 by Springer-Verlag. All rights for those portions (including the special
indexes) are reserved.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

README

MMIX is a computer intended to illustrate machine-level aspects of programming.
In my books The Art of Computer Programming, it replaces MIX, the 1960s-style
machine that formerly played such a role. MMIX’s so-called RISC (“Reduced Instruc-
tion Set Computer”) architecture is much better able to represent the computers
being built at the turn of the millennium.
I strove to design MMIX so that its machine language would be simple, elegant, and

easy to learn. At the same time I was careful to include all of the complexities needed
to achieve high performance in practice, so that MMIX could in principle be built and
even perhaps be competitive with some of the fastest general-purpose computers in
the marketplace. I hope that MMIX will therefore prove to be a useful vehicle for
people who are studying how to improve compilers and operating systems, and that
other authors will like MMIX well enough to make use of it in their own textbooks.
My goal in this work is to provide a clean, complete, and well-documented “machine-
independent machine” that people all over the world will be able to use as a testbed
for long-term research projects of lasting value, even as real computers continue to
change rapidly.
This book is a collection of programs that make MMIX a virtual reality. One of the

programs is an assembler, MMIXAL, which converts MMIX symbolic files to MMIX object
files. There also are two simulators, which execute the programs in given object files.
The first simulator, called MMIX-SIM or simply MMIX, executes a program one in-
struction at a time and allows convenient debugging. The second simulator, MMMIX,
simulates a high-performance pipeline in which many aspects of the computation are
overlapped in time. MMMIX is in fact a highly configurable “meta-simulator,” capa-
ble of simulating an enormous variety of different kinds of pipelines with any number
of functional units and with many possible strategies for caching, virtual address
translation, branch prediction, super-scalar instruction issue, etc., etc.
The programs in this book are somewhat primitive, because they all are based on

a simple terminal interface: Users type commands and the computer types out a
reply. Still, these programs are adequate to provide a basis for future developments.
I’m hoping that at least one reader of this book will discover how much fun MMIX

programming can be and will be motivated to create a nice graphical interface, so
that other people will more easily be able to join in the fun. I don’t have the time or
talent to construct a good GUI myself, but I’ve tried to write the programs in such a
way that modifications and enhancements will be easy to make.
The latest versions of all these programs can be downloaded from MMIX’s home page

http://mmix.cs.hm.edu/

in a file named mmix−YYYYMMDD.tar.gz. The programs are copyrighted, but anyone
can use them without charge. Furthermore I explicitly allow anybody to copy and
modify the programs in any way they like, provided only that the computer files
are given different names whenever they have been changed. Only my designated
successors in Munich are allowed to make a correction or addition to the copyrighted
file mmixal.w, for example, unless the corrected file is identified by some other name
(possibly ‘turbo−mmixal.w’ or ‘mmixal++.w’, etc.).

README vi

The programs are all written in CWEB, a language that combines C with TEX in such
a way that standard preprocessors can easily convert mmixal.w into a compilable file
mmixal.c or a documentation file mmixal.tex. CWEB also includes a “change file”
mechanism by which people can easily customize a master source file like mmixal.w

without changing the master file in any way. (See

http://www−cs−faculty.stanford.edu/~knuth/cweb.html

for complete information about CWEB, including installation instructions for the related
software.) Readers of the present book who are unfamiliar with CWEB might want to
refer to the notes on “How to read CWEB programs” that appear on pages 70–73 of my
book The Stanford GraphBase (New York: ACM Press, 1993), but the general ideas
are almost self-explanatory so I decided not to reprint those notes here.
During the next several years, as I write Volume 4 of The Art of Computer Pro-

gramming, I plan to prepare updates to Volumes 1–3 whenever Volume 4 needs to
refer to new material that belongs more properly in earlier volumes. These updates,
called “fascicles,” will be available on the Internet via

http://www−cs−faculty.stanford.edu/~knuth/taocp.html

and they will also be published in hardcopy form. The first such fascicle is already
finished and available for downloading; it is a tutorial introduction to MMIX and the
MMIX assembly language. Everybody who is seriously interested in MMIX should read
that First Fascicle, preferably before reading the programs in the present book.

I’ve tried to make the MMIXware programs interesting to read as well as useful.
Indeed, the MMIX-PIPE program, which is the chief component of the MMMIX meta-
simulator, is one of the most instructive programs I’ve ever had the pleasure of writing.
But I don’t expect a great number of people to study every part of this book closely, or
even to study every part of MMIX-PIPE. The main purpose of this book is to provide
a complete documentation of the MMIX computer and its assembly language. Many
details about MMIX were too “picky” or too system-oriented to be appropriate for the
First Fascicle, but every detail about MMIX can be found in the present book.

After the MMIXware programs have been installed on a UNIX-like system, they are
typically used as follows. First a user program is written in assembly language and
put into a file, say foo.mms. (The suffix .mms stands for “MMIX symbolic.”) Then the
command

mmixal foo.mms

will translate it into an object file, foo.mmo. Alternatively, a command such as

mmixal -l foo.lst foo.mms

could be used; this would produce a listing file, foo.lst, in addition to foo.mmo.
The listing file, when printed, would show the contents of foo.mms together with the
assembled machine language instructions.

vii README

Once an object file like foo.mmo exists, it can be run on the simple simulator by
issuing a command such as

mmix foo

(or mmix foo.mmo). Many options are also possible; for example,

mmix -s foo

will print running time statistics when the program ends;

mmix -P foo

will print a profile that shows exactly how often each instruction was executed;

mmix -v foo

will give “verbose” details about everything the simulator did;

mmix -t2 foo

will trace each instruction the first two times it is performed; and so on. Also

mmix -i foo

will run the simulator in interactive mode, obeying various online commands by which
the user can watch exactly what is happening when key parts of the program are
reached. The command

mmix foo bar

will run the simulator as if MMIX itself were running the command ‘foo bar’ with a
rudimentary operating system; any number of command-line arguments can follow
the name of the program being simulated.
The MMMIX meta-simulator can also be applied to the same program, although a

bit more preparation is necessary. First the command

mmix -Dfoo.mmb foo bar

will dump out a binary file foo.mmb containing the information needed to load ‘foo
bar’ into MMIX’s memory. Then a command like

mmmix plain.mmconfig foo.mmb

will invoke the meta-simulator with a “plain” pipeline configuration. The meta-
simulator always runs interactively, using the prompt ‘mmmix>’ when it wants in-
structions about what to do next. Users can type ‘?’ in response to this prompt if
they want to be reminded about what the simulator can do. Typical responses are
‘vff’ (run verbosely); ‘v0’ (run quietly); ‘p’ (show the pipeline); ‘g255’ (show global
register 255); ‘D’ (show the D-cache); ‘b200’ (pause when location #200 is fetched);
‘1000’ (run 1000 cycles); etc. Some familiarity with MMIX-PIPE is necessary to un-
derstand the meta-simulator’s reports of its activity, but users of mmmix are assumed

README viii

to be able to extract high-level information from a mass of low-level details. (This
talent, after all, is the hallmark of a computer scientist.)

The programs in this book appear in alphabetical order:

MMIX explains everything about the MMIX architecture.

MMIX-ARITH contains subroutines for 64-bit fixed and floating point arithmetic,
using only 32-bit fixed point arithmetic.

MMIX-CONFIG processes configuration files for MMMIX.

MMIX-IO contains subroutines for the primitive input/output operations of a rudi-
mentary operating system.

MMIX-MEM handles memory references of MMMIX in special cases associated with
memory-mapped input/output.

MMIX-PIPE does the hard work of pipeline simulation.

MMIX-SIM is the program for the non-pipelined simulator.

MMIXAL is the assembly program.

MMMIX is the driver program for the meta-simulator.

MMOTYPE is a utility program that translates an MMIX object file into human-
readable form.

The first of these, MMIX, is not actually a program, although it has been formatted
as a CWEB document; it is a complete definition of MMIX, including the details of
features that are used only by the operating system. It should be read first, but the
other programs can be read in any order. (Actually MMIXAL or MMIX-SIM should
probably be read next after MMIX, and MMIX-PIPE last. The program MMIX-SIM is
the line-at-a-time simulator that is known simply as mmix after it has been compiled.)

Mini-indexes have been provided on each right-hand page of this book so that the
programs can be read essentially as hypertext. Every identifier that is used on a two-
page spread but defined on some other page is listed in the mini-index. For example, a
mini-index entry such as ‘oplus : octa (), MMIX-ARITH §5’ means that the identifier
oplus denotes a function defined in section §5 of the MMIX-ARITH module, returning
a value of type octa. A master index to all uses of all identifiers appears at the end
of this book.

Happy hacking!
Donald E. Knuth

Cambridge, Massachusetts
17 October 1999

CONTENTS

v README (a preface)

1 WELCOME (an explanation)

2 MMIX (a definition)
62 MMIX-ARITH (a library)

110 MMIX-CONFIG (a part of MMMIX)
138 MMIX-IO (a library)
148 MMIX-MEM (a triviality)
150 MMIX-PIPE (a part of MMMIX)
332 MMIX-SIM (a simulator)
422 MMIXAL (an assembler)
494 MMMIX (a meta-simulator)
510 MMOTYPE (a utility program)

524 Master Index (a table of references)

