Tree-Like Resolution Is Superpolynomially
Slower Than DAG-Like Resolution for the
Pigeonhole Principle

Kazuo Iwama* and Shuichi Miyazaki

School of Informatics, Kyoto University, Kyoto 606-8501, Japan
{iwama, shuichi}@kuis.kyoto-u.ac.jp

Abstract. Our main result shows that a shortest proof size of tree-like
resolution for the pigeonhole principle is superpolynomially larger than
that of DAG-like resolution. In the proof of a lower bound, we exploit
a relationship between tree-like resolution and backtracking, which has
long been recognized in this field but not been used before to give explicit
results.

1 Introduction

A proof system is a nondeterministic procedure to prove the unsatisfiability of
CNF formulas, which proceeds by applying (usually simple) rules each of which
can be computed in polynomial time. Therefore, if there is a proof system which
runs in a polynomial number of steps for every formula, then NP=coNP [5]. Since
this is not likely, it has long been an attractive research topic to find exponential
lower bounds for existing proof systems. There are still a number of well-known
proof systems for which no exponential lower bounds have been found, such as
Frege systems [3].

Resolution is one of the most popular and simplest proof systems. Even so,
it took more than two decades before Haken [6] finally obtained an exponential
lower bound for the pigeonhole principle. This settlement of the major open
question, however, has stimulated continued research on the topic [1, 4, 8]. The
reason is that Haken’s lower bound is quite far from being tight and his proof,
although based on an excellent idea later called bottleneck counting, i1s not so
easy to read.

Tree-like resolution is a restricted resolution whose proof must be given as
not directed acyclic graph (DAG) but a tree. It is a common perception that
tree-like proof systems are exponentially weaker than their DAG counterparts.
Again, however, proving this for resolution was not easy: In [2], Bonet et al.
showed that there exists a formula whose tree-like resolution requires 22("°)
steps for some ¢, while n°1) steps suffice for DAG-like resolution.

In this paper, we give such a separation between tree-like and DAG-like
resolutions using the pigeonhole principle that is apparently the most famous

* Supported in part by Scientific Research Grant, Ministry of Japan, 10558044,
09480055 and 10205215.

and well-studied formula. Our new lower bound for tree-like resolution is (%)%
steps for the n + 1 by n pigeonhole formula. The best previous lower bound is
2" [4] which is not enough for such a (superpolynomial) separation since the
best known upper bound of DAG-like resolution is O(n32") [4]. Our new lower
bound shows that tree-like resolution is superpolynomially slower than DAG-like
resolution for the pigeonhole principle.

Another contribution of this paper is that the new bound is obtained by fully
exploiting the relationship between resolution and backtracking. This relation-
ship has long been recognized in the community, but it was informal and no
explicit research results have been reported. This paper is the first to formally
claim a benefit of using this relationship. Our lower bound proof is completely
based on backtracking, whose top-down structure makes the argument surpris-
ingly simple and easy to follow.

In Sec. 2, we give basic definitions and notations of resolution, backtracking
and the pigeonhole principle. We also show the relationship between resolution
and backtracking. In Sec. 3, we prove an (%)% lower bound of tree-like resolution
for the pigeonhole principle. In Sec. 4, we give an upper bound O(n?2") of the
DAG-like resolution which is slightly better than O(n32") proved in [4]. It should
be noted that our argument in this paper holds also for a generalized pigeonhole
principle, called the weak pigeonhole principle, which is an m by n (m > n)
version of the pigeonhole principle. Finally, in Sec. 5, we mention future research
topics related to this paper.

2 Preliminaries

A wariable is a logic variable which takes the value true (1) or false (0). A literal
is a variable & or its negation Z. A clause is a sum of literals and a CNF formula
is a product of clauses. A truth assignment for a CNF formula f is a mapping
from the set of variables in f into {0,1}. If there is no truth assignment that
satisfies f, we say that f is unsatisfiable.

The pigeonhole principle is a tautology which states that there is no bijection
from a set of n+ 1 elements into a set of n elements. PH P71 is a CNF formula
that expresses a negation of the pigeonhole principle; hence PH P?*! is unsat-
isfiable. PH P?+1 consists of n(n + 1) variables z; ; (1 <i<n+1,1<j<n),
and z; ; = 1 means that ¢ is mapped to j. There are two sets of clauses. The first
part consists of clauses (2;1 + #i2+ - - 4+ 2;,) for 1 < ¢ < n+ 1. The second
part consists of clauses (Z; 5 + Tj %), where 1 <k <nandl1<i<j<n+1
Thus there are (n+ 1) + %(nz(n + 1)) clauses in total.

Resolution 1s a proof system for unsatisfiable CNF formulas. It consists of
only one rule called an inference rule, which infers a clause (A + B) from two
clauses (A+x) and (B+7), where each of A and B denotes a sum of literals such
that there is no variable y that appears positively (negatively, resp.) in 4 and
negatively (positively, resp.) in B. We say that the variable x is deleted by this
inference. A resolution refutation for f is a sequence of clauses Cy,Cs, -, Cy,
where each C; is a clause in f or a clause inferred from clauses C; and Cj
(J, k < i), and the last clause C} is the empty clause (0). The size of a resolution
refutation is the number of clauses in the sequence.

A resolution refutation can be represented by a directed acyclic graph. (In this
sense, we sometimes use the term DAG-like resolution instead of “resolution.”)
If the graph is restricted to a tree, namely, if we can use each clause only once
to infer other clauses, then the refutation is called tree-like resolution refutation
and the tree is called a resolution refutation tree (rrt). More formally, an rrt for a
formula f 1s a binary rooted tree. Each vertex v of an rrt corresponds to a clause,
which we denote by Cl(v). Cl(v) must satisfy the following conditions: For each
leaf v, Cl(v) is a clause in f, and for each vertex v other than leaves, Cl(v) is
a clause inferred from Cl(v1) and Cl(v3), where vy and ve are v’s children. For
the root v, Cl(v) is the empty clause (0). The size of an rrt is the number of
vertices in the rrt.

Backtracking (e.g., [7]) determines whether a given CNTF formula is satisfiable
or not in the following way: For a formula f, variable z and a € {0,1}, let fy=q
be the formula obtained from f by substituting value a for z. In each step, we
choose a variable x and calculate f,—o and f,—1 recursively. If f is simplified to
the constant true function at any point, then f is satisfiable, and otherwise, f
is unsatisfiable.

Backtracking search is also represented by a tree. A backtracking tree (btt) for
an unsatisfiable formula f is a binary rooted tree satisfying the following three
conditions: (i) Two edges e; and ez from a vertex v are labeled as (x = 0) and
(x = 1) for a variable #. (ii) For each leaf v and each variable z, x appears at
most once (in the form of (z = 0) or (x = 1)) in the path from the root to v.
(iii) For each vertex v, let As(v) be the (partial) truth assignment obtained by
collecting labels of edges in the path from the root to v. Then, for each v, v is
a leaf iff f becomes false by As(v). (Recall that we consider only unsatisfiable
formulas.) The size of a btt is the number of vertices in the btt.

Proposition 1. Let f be an unsatisfiable CNF formula. If there exists an rrit for
f whose size is k, then there exists a bit for f whose size is at most k.

Proof. Let R be an rrt for f. It is known that a shortest tree-like resolution
refutation is regular, i.e., for each path from the root to a leaf, each variable is
deleted at most once [9]. Thus we can assume, without loss of generality, that R
is regular.

From R, we construct a btt B which is isomorphic to B. What we actually
do is to give a label to each edge in the following way: Let v; be a vertex of R
and let v;, and v;, be its children. Suppose Cl(v;) = (A+ B), Cl(v;,) = (A+ =)
and Cl(v;,) = (B+7). Then the labels (z = 0) and (z = 1) are assigned to edges
(ts, uiy) and (ug, uz,), respectively, where w; is a vertex of B corresponding to v;
of R. We shall show that this B is a btt for f.

It is not hard to see that the conditions (i) and (ii) for btt are satisfied.
In the following, we show that for any leaf u of B, f becomes false by As(u).
This is enough for the condition (iii) because if f becomes false in some non-
leaf node, then we can simply cut the tree at that point and can get a smaller
one. To this end, we prove the following statement by induction: For each ¢, the
clause Cl(v;) of R becomes false by the partial assignment As(w;) of B. For the
induction basis, 1t is not hard to see that the statement is true for the root.
For the induction hypothesis, suppose that the statement is true for a vertex

v;, 1.e., Cl(v;) becomes false by As(u;). Now we show that the statement is also
true for v;’s children. Let v;, and v;, be v;’s children, and let Cl(v;) = (A + B),
Cl(viy) = (A+2) and Cl(v;,) = (B +). Then the label of the edge (v;,v;,) is
(x = 0), and hence, As(u;,) = As(u;) U {(x = 0)}. Since As(u;) makes (4 4+ B)
false, As(u;,) makes (A+z) false. The same argument shows that As(u;,) makes
Cl(v;,) false. Now the above statement is proved, which immediately implies that
As(u;) makes f false for every leaf u; of B. O

Thus to show a lower bound of tree-like resolution, it suffices to show a lower
bound on the size of btts.

3 A Lower Bound

In this section, we prove a lower bound on the size of tree-like resolution for
PHPR+L

r
4

Theorem 1. Any tree-like resolution refutation for PH PPt requires (§)+ steps.

Proof. By Proposition 1, it is enough to show that any btt for PH P2 *! requires
(%)% vertices. For simplicity, we consider the case that n is a multiple of 4. Let
B be an arbitrary btt for PH P?*!. As we have seen before, each vertex v of B
corresponds to a partial truth assignment As(v). For a better exposition, we use
an n+ 1 by n array representation to express a partial assignment for PH P?+L.
Fig. 1 shows an example of PHPJ. A cell in column i and row j corresponds to
the variable x; ;. We consider that the value 1 (resp. 0) is assigned to the variable
z; ; if the (4, j) entry of the array is 1 (resp. 0). For example, Fig. 1 (b) expresses
a partial assignment such that z; 4 =229 =244 =253 =0, a3z =241 = 1. It
should be noted that PHPI*! becomes false at a vertex v iff (i) As(v) contains
a column filled with 0Os or (ii) As(v) contains a row in which two 1s exist.

Here are some notations. For a partial assignment A, a 0 in the (¢,j) entry
of A is called a bad 0 if neither the column ¢ nor the row j contains a 1, and
is called a good 0 otherwise. (The reason why we use terms “bad” and “good”
will be seen later. Bad 0Os make it difficult to count the number of vertices in B
in our analysis.) #BZ(A) denotes the number of bad 0s in A. A variable x; ; is
called an active variable for A if x; ; is not yet assigned (that is, (¢, j) entry of A
is blank) and neither the column ¢ nor the row j contains a 1. For example, let
Ag be the assignment in Fig. 1 (b). Then #BZ(Ap) = 2 (0s assigned to 1 4 and
g 9). For example, x5 4 is an active variable for Ag. Let v be a vertex of B and vy
and vy be its children. Suppose that labels of edges (v,vg) and (v, v1) are (z = 0)
and (z = 1), respectively. Then we write Var(v) = x, namely, Var(v) denotes
the variable selected for substitution at the vertex v. We call vg a false-child of v
and write F'(v) = vo. Similarly we call v1 a true-child of v and write T(v) = v;.

We want to show a lower bound on the number of vertices in B. To this end,
we construct a tree S from B. Before showing how to construct S, we show some
properties of S: The set of vertices of S is a subset of the set of vertices of B, so
the number of vertices of S gives a lower bound on the number of vertices of B.
Each internal vertex of S have either a single child or exactly 7 children. The

X1, 1| X2,1|X3,1| X4 1| X5,1 1
X1, 2| X2,2| X3, 2| X4, 2| X5, 2 0
X1,3 | X2,3| X3,3| X4,3| X5,3 1 0
X1, 4| X2,4] X3 4| X4,4| X5, 4 0 0
@ (b)

Fig.1. An array representation of a partial assignment for PH Py

height of S is Z; more precisely, the length of any path from the root to a leaf
is exactly 7.

Now we show how to construct S. The root of S is the root of B. For each
vertex v of S, we select the set CH(v) of v’s children in the following way: C'H (v)
is initially empty and vertices are added to CH(v) one by one while tracing the
tree B down from the vertex v. We look at vertices T'(v), T(F(v)), T(F(F(v)))(=
T(F%(v))), ---, T(F'(v)), - -- in this order. We add T(F'(v)) (I > 0) to CH(v)
if Var(F!(v)) is an active variable for As(F'(v)). Fig. 2 illustrates how to trace
the tree B when we construct the tree S. In this example, T(F%(v)) is “skipped”
because Var(F?(v)) is not an active variable. We stop adding vertices if |C'H (v)]

becomes %. In this case, v has exactly 7 children.

T(v) T(F(v))T(F>(v)) T(Fi(v)) T(F(v))

F? (v) Var (F2(v))

0
Fl(v) /|1

Fl+1 (V) 0
T(F! (v)) . 1

Fig.2. A part of S constructed from B

However, there is one exceptional condition to stop adding vertices to CH (v)

even if [C'H(v)| is less than %; when the number of bad 0s in some column
reaches %, we stop adding vertices to C'H(v). More formally, let us consider a
vertex F'(v). Suppose that the number of bad 0s in each column of As(F!(v))

is at most % — 1. Also, suppose that Var(F'(v)) is x; ; where the column i
of As(F'(v)) contains exactly % — 1 bad Os and there is no 1 in the row j

of As(F'(v)). (See Fig. 3 for an example of the case that n = 12. There are
eight Os in the column i. Among them, five Os are bad 0s.) Then As(F't!(v))

contains 5 bad Os in the column 7, and hence we do not look for vertices any
more, namely, T(F'(v)) is the last vertex added to C H(v). (Note that T(F!(v))
is always selected since z;; is an active variable for As(F'(v)).) In this case,
|CH (v)| may be less than Z. If so, we adopt only the last vertex as a child of v,
i.e., only T(F'(v)) is a child of v in S. Thus, in this case, v has only one child. It
should be noted that, in the tree S, every assignment corresponding to a vertex
of depth ¢ contains exactly ¢ 1s. We continue this procedure until the length of
n

every path from the root to a leaf becomes Z.

as (F1(v))

\
NV 0

1 0
. 1 0
. 0

Tv) F (v)
1 0 0 1
)\\F o ‘
T(F (v)) ‘ 0

Fig.3. A condition to stop tracing B

Var (F1 (v))

We then show that it is possible to construct such S from any B. To see this,
it suffices to show that we never reach a leaf of B while tracing B to construct S.
Recall the definition of a backtracking tree: For any leaf u of btt, As(u) makes
the CNF formula false. For As(u) to make PHP?*! false, As(u) must have a
row containing two ls or a column full of 0s. The former case does not happen
in S because we have skipped such vertices in constructing S. The latter case
does not happen for the following reason: Recall that once the number of bad 0s
in some column reaches 7, we stop tracing the tree B. So, as long as we trace
B in constructing S, we never visit an assignment such that the number of bad
0s in a column exceeds & — 1. Also, recall that the number of 1s in As(v) is

2
at most % since v’s depth in S is at most %. So the number of good 0s in a
column is at most 3. Hence the number of Os in each column is at most n — 1,
and so, no column ever becomes filled with 0s. Now let us consider the following

observation which helps to prove later lemmas.

Observation 1. Consider a vertex v in B and let v/ = F'(v) for some [(see Fig.
4). Suppose first that T'(v") is added to CH (v) in constructing S. Then Var(v')
must be an active variable for ¢/, and hence #BZ(As(F(v"))) = #BZ(As(v')) +
1. On the other hand, suppose that T'(v') is not added to C'H(v) in constructing
S. Then Var(v’) is not an active variable for v'. Therefore, #BZ(As(F(v"))) =
#BZ(As(v")).

Now we have a tree S having the following properties: The length of any path

from the root to a leaf is 5. Every vertex in .S except for leaves has exactly 7

children or one child. When a vertex v has one child, we call the edge between
v and its child a singleton.

.1/‘-\0

v
1 0
T(v’) F(v’)

Fig.4. An example for Observation 1

Lemma 1. Consitder an arbitrary path P = UpUi Uy« Uz m S, where ug s
the root and uxn is a leaf For each k, if (up_1,up) is not a singleton, then

#B7Z(As(u)) < #BZ(As(up_1)) + 2 — 1.

Proof. Consider up_1 and wug in the path P. Let v be the vertex in the btt B
corresponding to uj_;. Then there is some [such that T(F'(v)) corresponds to
uy. By Observation 1, #BZ(As(F'(v))) — #BZ(As(v)) is equal to the number
of vertices added to C'H(v) among T'(v), T(F(v)), T(F2(v)),---,T(F'=*(v)). So
#BZ(As(F'(v))) — #BZ(As(v)) < % — 1. Note that As(T(F'(v))) is the result
of adding one 1 to some active variable of As(F!(v)), so #BZ(As(T(F'(v)))) <
#BZ(As(F'(v))). Hence #BZ(As(T(F'(v)))) < #BZ(As(v)) + 2 — 1, namely,
#BZ(As(uy)) < #BZ(As(up_1))+ 5 —1. 0

Lemma 2. Consider an arbitrary path P = uguiusg - -- Uz m S, where ug is the
root and ux is a leaf. For eachk, if (up—1,uy) is a singleton, then #BZ(As(uy)) <
#BZ(As(up-1)) — 5.

Proof. Suppose that the edge (uj_y,u;) is a singleton. Let v and T(F'(v))
be vertices in B corresponding to ugp_1 and wuy, respectively. The same argu-

ment as in Lemma 1 shows that #BZ(As(F'(v))) — #BZ(As(v)) < 4 — 1. Let
Var(F'(v)) = ;5. Since (ug_1,uy) is a singleton, there are % — 1 bad 0s in the

column i of As(F'(v)). Thus substituting the value 1 for the variable x; ; makes
at least % —1 bad 0s good, namely, #BZ(As(T(FY)) < #BZ(As(F'(v)))— (2 —

1). Hence #BZ(As(T(F'(v)))) < #BZ(As(v)) — 2, namely, ;u#:EBZ(As(uk))2 <
#BZ(As(up—1)) —

~~

7
O

INE

Lemma 3. Consider an arbitrary path P = uguiusg - -- Uz m S, where ug is the
root and uz 1s a leaf. The number of singletons in P is at most 7.

Proof. Suppose that there exist more than % singletons in the path P. We count
the number of bad 0s of assignments along P. At the root, #BZ(As(ug)) = 0.

Going down the path from the root ug to the leaf uz, the number of bad 0s is
increased at most (§ — 1)(§ — 1) < % by Lemma 1, and is decreased at least

25+ > % by Lemma 2. This is a contradiction because the number of bad
0s becomes negative at the leaf. This completes the proof. O

Fig. 5. Shrinking S to obtain S’

Finally we “shrink” the tree S by deleting all singletons from S. Let S’ be
the resulting tree (see Fig. 5). Each vertex of 5" has exactly % children and the
length of every path from the root to a leaf is at least 7 by Lemma 3. So there
are at least (%)% vertices in S’, and hence, the theorem follows. O

Remark. By slightly modifying the above proof, we can get a better lower
bound of (&)”. For the tree S in the above proof, we restrict the number of
children of each node, the maximum number of bad 0s in each column, and the
height of the tree with 7, 3, and %, respectively. To get a better lower bound,
we let them be 6%n, én, and (1 — é§)n, respectively, with § = @. Then, the
number of singletons in each path is at most §(1 — é§)n and hence we can obtain

a lower bound (6271)(1_6)2” 2 (ﬁ)n'

4 An Upper Bound

It is known that the size of a DAG-like resolution refutation for PHP?+! is
O(n®2™)[4]. Here we show a slightly better upper bound which is obtained by
the similar argument as [4]. We can also obtain an upper bound of tree-like
resolution refutation for PH P?*! as a corollary.

Theorem 2. There is a DAG-like resolution refutation for PH PP whose size
is O(n?2").

Proof. Let @ and R be subsets of {1,2,---,n+1} and {1,2,---,n}, respectively.
Then we denote by Py g the sum of positive literals z; ;, where ¢ € ¢} and j € R.
Let [i, j] denote the set {i,i4+1,---,5—1,7}.

We first give a rough sketch of the refutation and then describe it in detail.
The 0th level of the refutation has the single clause Py [1,,). The first level
consists of n clauses P}y o) g(n-1) for all sets R(=1) C [1,n] of size n — 1. The

second level consists of ,Cp_s clauses [}y g1 g(n—2) for all sets R(=2) C [1,n] of
size n—2. Generally speaking, the ith level consists of ,,C, —; clauses Py ;117 pn—)
for all R~ C [1,n] of size n — i. At the (n — 1)th level, we have ,C; = n
clauses P11 n1,111, Fi,nl, 4215 H1,n] {ny - Finally, at the nth level, we have the
empty clause. We call the clauses described here main clauses. Note that there
are Xi=1(,C;) = 2" main clauses. Fig. 6 shows an example of the case when
n = 4. A “4+” sign in the (7,j) entry means the existence of the literal z; ; in
that clause.

]+
]+
]+
[+ +
]+]+]+
]+]+]+
]+]+]+
+ 4+ + 4+ + 4+
++ ++ ++
++ ++ ++
++ ++ ++
++ ++ ++
+
+
+
+

Fig. 6. Main clauses of the refutation

Then we describe the detail of the refutation. Each clause at the ith level
is obtained by using ¢ clauses of the (i — 1)th level and some initial clauses.
To construct a clause Py ;417 151,50, jn_ 3 in the ith level, we use ¢ clauses

P il g1 ,jarjneky for all k & {51, jo, -+, jns}. First, for each k, we construct
a clause P13 15,2, jn_i} Y Tig1,k using the clause P[LZ]V{]I7]27...7]71_“;6} of the
(1 — 1)th level and ¢ clauses (T + Tix12)(Tor + Tigiw) - (FTig + Tixin)-
Then we construct a target clause P ;41],45, 4s,-,jn_:} PY using those ¢ clauses
Bii1451.50,nei} YTig1k and the initial clause Pyiyq1y1). Fig. 7 illustrates an
example of deriving P}y g) y1,43 in the second level from clauses P[l 2],{1,2,4) and
P 9),41,3,4) in the first level. Similarly as the “4+” sign, a “—=” sign in the (7, j)
entry means the existence of the literal Z; ; in that clause.

\
5

++ ++
f f
++ ++
++

++
++ ++

Fig. 7. Constructing a main clause

Thus to construct each main clause, we need O(n?) steps. Since there are 2"
main clauses, the size of the above refutation is bounded by O(n?2"). O

Corollary 1. There is a tree-like resolution refutation for PH PP whose size
is O(nn!).

Proof. This 1s obtained by reforming the directed acyclic graph of the refutation
obtained in Theorem 2 into a tree in a trivial manner. For main clauses, we
have one level-n clause, n level-(n — 1) clauses, n(n — 1) level-(n — 2) clauses
and so on. Generally speaking, we have n(n —1)--- (¢ 4+ 1) level-¢ clauses. Thus
we have 1+ ZiZ0 7 n(n — 1) - (i 4+ 1) < 2n! main clauses. Each main clause is
constructed in O(n?) steps and hence the size of the refutation is O(n?n!). O

5 Concluding Remarks

By Theorems 1 and 2, we can see that the size of any tree-like resolution refuta-
tion is superpolynomially larger than the size of a shortest DAG-like resolution
refutation. An interesting future research is to find a set of formulas that sep-
arates tree-like and DAG-like resolutions in the rate of 2°* for some constant ¢
improving [2]. Another research topic is to find a tighter bound of the tree-like
resolution for the pigeonhole principle. Note that an upper bound O(n*n!) and
a lower bound ($)” obtained in this paper are tight in the sense that they

both grow at the same rate of n(t=o()" An open question is whether we can
get a tighter lower bound, e.g., 2(n!).

Acknowledgments. The authors would like to thank Magnus M. Halldérsson
for his valuable comments.

References

1. P. Beame and T. Pitassi, ”Simplified and improved resolution lower bounds,” Proc.
FOCS’96, pp. 274-282, 1996.

2. M. L. Bonet, J. L. Esteban, N. Galesi and J. Johannsen, “Exponential separations
between restricted resolution and cutting planes proof systems,” Proc. FOCS5’98,
pp. 638647, 1998.

3. S. Buss, “Polynomial size proofs of the propositional pigeonhole principle,” Journal
of Symbolic Logic, 52, pp. 916-927, 1987.

4. S. Buss and T. Pitassi, ”Resolution and the weak pigeonhole principle,” Proc.
CSL’97, LNCS 1414, pp.149-156, 1997.

5. S. A. Cook and R. A. Reckhow, “The relative efficiency of propositional proof
systems,” J. Symbolic Logic, 44(1), pp. 36-50, 1979.

6. A. Haken, “The intractability of resolution,” Theoretical Computer Science, 39,
pp. 297-308, 1985.

7. P. Purdom, “A survey of average time analysis of satisfiability algorithms,” Journal
of Information Processing, 13(4), pp.449-455, 1990.

8. A. A. Razborov, A. Wigderson and A. Yao, “Read-Once Branching programs,
rectangular proofs of the pigeonhole principle and the transversal calculus,” Proc.
STOC97, pp. T39-748, 1997.

9. A. Urquhart, “The complexity of propositional proofs,” The Bulletin of Symbolic
Logic, Vol. 1, No. 4, pp. 425-467, 1995.

