Abstract
It is of interest in cryptographic applications to obtain practical performance improvements for the discrete logarithm problem over prime fields \( \mathbb{F}_p \) with p of size ≤ 500 bits. The linear sieve and the cubic sieve methods described in Coppersmith, Odlyzko and Schroeppel’s paper [3] are two practical algorithms for computing discrete logarithms over prime fields. The cubic sieve algorithm is asymptotically faster than the linear sieve algorithm.
We discuss an efficient implementation of the cubic sieve algorithm in- corporating two heuristic principles. We demonstrate through empirical performance measures that for a special class of primes the cubic sieve method runs about two to three times faster than the linear sieve method even in cases of small prime fields of size about 150 bits.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bressoud, D.M.: Factorization and Primality Testing, UTM, Springer-Verlag, 1989.
Cohen, H.: A course in computational algebraic number theory, GTM 138, Springer-Verlag, 1993.
Coppersmith, D., Odlyzko, A.M., Schroeppel, R.: Discrete logarithms in GF(p), Algorithmica 1 (1986), 1–15.
Das, A., Veni Madhavan, C.E.: Galois field library: Reference manual, Technical report No. IISc-CSA-98-05, Department of Computer Science and Automation, Indian Institute of Science, Feb 1998.
Gerver, J.: Factoring large numbers with a quadratic sieve, Math. Comp. 41 (1983), 287–294.
Gordon, D.M.: Discrete logarithms in GF(p) using the number field sieve, SIAM Journal of Discrete Mathematics 6 (1993), 124–138.
LaMacchia, B.A., Odlyzko, A.M.: Computation of discrete logarithms in prime fields, Designs, Codes, and Cryptography 1 (1991), 46–62.
LaMacchia, B.A., Odlyzko, A.M.: Solving large sparse linear systems over finite fields, Advances in Cryptology-CRYPTO’90, A. J. Menezes and S. A. Vanstone (eds.), LNCS 537 (1991), Springer-Verlag, 109–133.
McCurley, K.S.: The discrete logarithm problem, Cryptology and Computational Number Theory, Proc. Symp. in Appl. Math. 42 (1990), 49–74.
Menezes, A.J., ed.: `Applications of finite fields’, Kluwer Academic Publishers, 1993.
Odlyzko, A.M.: Discrete logarithms and their cryptographic significance, Advances in Cryptology: Proceedings of Eurocrypt’84, LNCS 209 (1985), Springer-Verlag, 224–314.
Schirokauer, O., Weber, D., Denny, T.: Discrete logarithms: the effectiveness of the index calculus method, Proc. ANTS II, LNCS 1122 (1996), Springer-Verlag, 337–361.
Silverman, R.D.: The multiple polynomial quadratic sieve, Math. Comp. 48 (1987), 329–339.
Weber, D.: Computing discrete logarithms with the general number field sieve, Proc. ANTS II, LNCS 1122 (1996), Springer-Verlag, 99–114.
Weber, D., Denny, T.: The solution of McCurley’s discrete log challenge, Crypto’98, LNCS 1462 (1998), Springer-Verlag, 458–471.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Das, A., Madhavan, C.E.V. (1999). Performance Comparison of Linear Sieve and Cubic Sieve Algorithms for Discrete Logarithms over Prime Fields. In: Algorithms and Computation. ISAAC 1999. Lecture Notes in Computer Science, vol 1741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46632-0_30
Download citation
DOI: https://doi.org/10.1007/3-540-46632-0_30
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66916-6
Online ISBN: 978-3-540-46632-1
eBook Packages: Springer Book Archive