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Abstract. In this paper we present a novel approach for cluster-based
drawing of large planar graphs that maintains planarity. Our techni-
que works for arbitrary planar graphs and produces a clustering which
satisfies the conditions for compound-planarity (c-planarity). Using the
clustering, we obtain a representation of the graph as a collection of
O(logn) layers, where each succeeding layer represents the graph in an
increasing level of detail. At the same time, the difference between two
graphs on neighboring layers of the hierarchy is small, thus preserving
the viewer’s mental map. The overall running time of the algorithm is
O(nlogn), where n is the number of vertices of graph G.

1 Introduction

The problem of displaying large graphs often arises in the networking and tele-
communications areas. While such application areas typically give rise to non-
planar graphs, there are nevertheless several application areas that give rise to
large graphs that are planar. Examples of such planar graph applications include
computations arising in computational cartography and geographic information
systems (GIS). In this paper we are therefore concerned with the visualization
of large planar graphs.

There are several approaches to the visualization of planar graphs, each of
which must address the fact that the resolution of most display technologies (and
possibly even the human eye) simply cannot display more than a few million
pixels. Moreover, no matter how many pixels a display technology has, these
pixels must display not just the vertices of a graph of interest, but also, and
more importantly, the edges connecting these vertices. Our approach is based
on displaying the graph using a hierarchical clustering in which the graph is
represented by a collection of layers, where each succeeding layer describes the
graph in a decreasing level of detail. That is, together with G one gives a tree T’
such that the leaves of T' coincide with the vertices of GG, and each internal node
v of T represents the cluster defined by the vertices of G associated with the
descendent leaves of v in 7. In this case G can be drawn in a “layered” manner,
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where we draw each cluster on the same layer of T as a region of the plane
and connect adjacent clusters by segments. We would like that each such layer
be drawn planar, with no segments intersecting each other or intersecting the
boundary of a non-incident cluster region. Thus, the general goal of clustered
graph drawing is to preserve the global structure of a graph G by recursively
clustering smaller subgraphs of G and drawing these subgraphs as single nodes or
filled-in regions in a rendering of GG. By grouping vertices together into clusters
in this way one can recursively divide a given graph into layers of decreasing
detail, which can then be viewed in a top-down fashion.

1.1 Prior Related Work on Clustered Graph Drawing

If clusters of a graph are given as input along with the graph itself, then several
authors give various algorithms for displaying these clusters in two or three
dimensions [2,3,5,8]. Still, as will often be the case, if clusters of a graph are not
given a priori, then various heuristics can be applied for finding clusters using
properties such as connectivity, cluster size, geometric proximity, or statistical
variation [7,9,11]. If no clusters are given and no special properties are known in
advance, Duncan et al. [1] show how to create a hierarchical decomposition and
a 3-dimensional drawing for general graphs. However, for planar graphs, it is
possible to introduce edge-region crossings, in which edges cross cluster regions
they are not part of. Even with no edge-edge crossings, the edge-region crossings
are a serious drawback to the readability of a drawing.

Eades et al. [3] describe a drawing algorithm that draws a planar graph G,
assuming that the clusters of G preserve certain recursive conditions, which they
collectively call the c-planarity conditions. They show that if G and its clusters
satisfy the c-planarity conditions, then one can produce a drawing of G such that
each layer of the cluster hierarchy is drawn planar, with each vertex drawn as
a convex region and each edge drawn as a straight line segment. This approach
allows the graph to be represented by a sequence of drawings of increasing detail.
As illustrated by Eades and Feng [2], this hierarchical approach to drawing large
graphs can be very effective. However, we are not aware of any previous work
for deterministically producing a clustering of an arbitrary planar graph so as
to satisfy all the c-planarity conditions.

1.2 Owur Results

In this paper we provide an algorithm for constructing a clustering of any planar
graph so as to satisfy the c-planarity conditions of Eades et al. [3]. Our algorithm
runs in O(nlogn) time, uses O(n) space, and can be implemented using simple
“off-the-shelf” data structures. We also show that the clustering tree T', defined
by our algorithm, has the additional property that the number of clusters at
layer ¢ of T (i.e., the clusters associated with the nodes of T' at height ¢) is a
constant fraction fewer than the number of clusters at the next higher layer,
i + 1. Thus, T has O(logn) height. This in turn implies faster drawing times
when 7' is used in a clustered graph drawing algorithm.
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This logarithmic height result also implies some nice properties of the cluste-
red drawing itself. For example, had we instead produced a clustering tree T of
depth ©(n), which is possible if one uses a different clustering algorithm, then
we would have a hierarchy that takes an extraordinarily long time to traverse
for large planar graphs. At the same time, an o(logn) height for 7 would imply
drastic changes between consecutive layers in the hierarchy.

In addition to this logarithmic height result, our algorithm produces a clu-
stering such that the changes between the graphs in consecutive layers of the
hierarchy T are “local.” In order to preserve the viewer’s mental map of the
graph when moving from one layer to another, the changes in the graph should
be minimal. Given the graph in layer i in T', to obtain the graph associated with
the next higher layer ¢+1 in T', we need to group certain sets of vertices together
and replace them by new vertices. In this paper, we consider only changes that
affect pairs of vertices, so that the tree T is in fact a binary tree.

Thus we restrict our clustering operation so as to allow only the combining
of two adjacent clusters, which is an operation typically referred to as an edge
contraction. Through a sequence of graph contractions, we obtain the layer gra-
phs Go, Gy, ...,Gy, where Gy = G and Gy, is a singleton graph. If the changes
necessary to obtain layer i + 1 from layer ¢ are to be local, then the following
three locality conditions for edge contraction must be met:

1. A vertex can participate in at most one edge contraction.

2. Changes in the drawing of the graph that result from the contraction of an
edge (u,v) should only affect edges with endpoint u or v.

3. A contraction of edge (u, v) results in the creation of vertex w. The placement
of w in the drawing should be “close” to the edge (u,v). Optimally, we would
like that w lie along the line segment defined by (u,v).

We provide a clustering method that satisfies the above locality conditions. One
of the main challenges in creating the layers in a cluster hierarchy of a planar
graph is to define clusters and the drawing algorithm associated with G’s cluste-
ring in such a way that no edge crossings are introduced in the drawing of each
layer. We provide a drawing algorithm which makes use of our clustering me-
thod to produce a drawing that has neither edge-edge crossings nor edge-region
crossings. In addition, we show that one can use our clustering as input to the
clustered planar graph drawing algorithm of Eades et al. [3].

2 Hierarchical Embedding of Planar Graphs

Let us assume, without loss of generality, that all the graphs that we are dealing
with are maximally planar. If a particular graph is not maximally planar then
we can fully triangulate it. Let G = (V| E) be a maximally planar graph, where
|[V| = n. V(G) and E(G) as usual refer to the set of G’s vertices and edges,
respectively and the degree of a node v in graph G is dg(v). Let lg(f;) be the
length of a face f; in G, where by the length of the face we mean the number of
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vertices on that face. Further, Auvw will refer to the triangle defined by vertices
u,v,w and by the edges (u,v), (v,w), (w,u).

Similar to [2] we define the clustered graph C = (G,T') to be the graph G and
a tree T such that the vertices of G coincide with the leaves of T'. An internal
node of T represents a cluster, which consists of all the vertices in its subtree.
All the nodes of T at a given height i represent the clusters of that level. A view
at level i, G; = (V(G;), E(G;)), consists of the nodes of height 7 in T" and a set of
representative edges. The edge (u,v) is in E(G;) if there exists an edge between
a and b in G, where a is in the subtree of u and b is in the subtree of v. Each
node v € T has an associated region, corresponding to the partition given by 7.

We create the graphs G; in a bottom-up fashion, starting with Gy = G and
going all the way up to Gj, where k = height(T). We obtain G,y from G;
by contracting a carefully chosen set of edges of G; in a certain order. The z-
coordinate of a vertex v € V(G;) is equal to 4, that is, all the vertices in G;
are embedded in the plane given by z = i. The edges of T' are defined by the
edge contractions. More precisely, if (u,v) € E(G;) is contracted to a vertex
w € Gjit1, then edges (w,u) and (w,v) are added to T.

The problem of embedding planar graphs with straight lines and no cros-
sings is well studied [4,10,12]. Embedding clustered graphs without crossings
poses additional difficulties. To embed the layers, we reverse the sequence of
graph contractions: we start with embedding of G, (which has only one vertex).
To obtain an embedding for G;_; from an embedding for G; we consider the
set of edges of GG;_1 whose contraction resulted in GG;. We then reverse the pro-
cess by carefully expanding and embedding one edge from that set at a time.
Throughout this process we maintain the three locality conditions for edge ex-
pansions/contractions.

2.1 Edge Contraction and Separating Triangles

Contracting an edge is a standard operation on planar graphs, see [6]. We say
that an edge e = (u,v) of G is contracted when its endpoints, v and v, are
replaced by a new vertex w such that all resulting multiple edges are removed.
Ideally, we would like to perform edge contractions in a straight-line drawing
that can be continuously animated so as to preserve planarity. Furthermore, so
as to preserve the viewer’s mental map, we prefer that only the endpoints of the
contracted edge move, resulting in only minimal changes in the drawing.

It is well-known that contracting an edge in a planar graph results in a planar
graph [6]. Note that this does not imply that contracting an edge in a straight
line planar drawing of a graph results in a straight line planar drawing! More
precisely, consider a straight-line planar drawing of a graph and an edge to be
contracted. Suppose we are not allowed to move any other vertices in the drawing
except the two involved. Then there exist drawings in which the contraction of
some such edge introduces a crossing. We show this with an example in Fig. 1.

We have seen one of the problems that occur when an edge in an embedded
graph is contracted. Another problem can occur even if we do not have a fixed
embedding. When the contracted edge is a part of a separating triangle, the
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Fig.1. A subgraph of an embedded fully triangulated graph. Edge (u,v) cannot be
contracted without introducing a crossing, if we are to keep all other vertices fixed.

resulting graph is not fully triangulated and in fact may have many different
embeddings. We call a triangle in G is a separating triangle if the removal of its
vertices and their adjacent edges disconnects G.

Thus, we can divide the edges of G into two categories depending on the effect
their contraction has on the resulting graph. We say that an edge is simple if it
is not a part of a separating triangle. Edges that are part of separating triangles
we call non-simple. Non-simple edges present problems when contracted, so we
will be contracting only simple edges, for their contraction can be continuously
animated while preserving planarity using straight lines. Moreover, eliminating
the parallel edges after contracting a simple edge in a maximally planar graph
results in a maximally planar graph.

3 Simple Matching in Maximally Planar Graphs

In this section we show that any maximal matching that uses only simple edges
contains a constant fraction of all the edges in G, provided G is maximally
planar. Next we show how to find a matching that can be used to contract the
graph so that the resulting graph is maximally planar. Furthermore, if the size
of that matching is O(n), then after repeating this process O(logn) times we
are left with only a constant number of vertices. Thus, we need to show that we
can construct a maximal matching with O(n) edges such that their contraction
results in a maximally planar graph.

Let G’ be the graph obtained from G by removing all the non-simple edges.
We start by showing that any maximal matching in G’ contains at least n/12
edges. To prove this claim we construct a maximal matching in G’ and consider
faces of different lengths. Recall that the length of a face refers to the number
of vertices on that face. We break the faces of G’ into three classes, A, B,C,
respectively faces of length 3, faces of length 4, and faces of length 5 or more.
We then count the number of unmatched nodes in faces of the different classes.
Finally, when we factor in over-counting we show that any maximal matching
must contain at least n/12 edges.
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Lemma 1. If f; is a face in A, there is at most one unmatched vertex in f; and
this vertex has degree at least 3. If f; is a face in B or C, then there exist at
most 1(f;)/2 unmatched nodes in f;.

For the unmatched vertices on faces in A we can show that they have degree
at least 3 in G’. This is not necessarily true for the unmatched vertices on faces
in B or C. We show, however, that if a pair of unmatched vertices on a face in
B have degrees 2 in G’ then G belongs to a special class of graphs H. If G ¢ H
then for any face f; € B, at most one vertex on that face has degree 2.

Lemma 2. Let H be the class of mazximally planar graphs in which there exist
two wvertices, u,v such that every other vertex in the graph is adjacent to both
u and v. Then if H € H, any mazimal matching that uses only simple edges
contains n/12 or more edges.

Lemma 3. Let G and G’ be a planar graph and the induced graph on G in which
all the non-simple edges have been removed. If there exists a face in B with more
than one vertex of degree 2, then G € H.

We have shown that if G’ has a face of length four with more than two nodes
of degree 2, then G € H and hence any maximal matching in G’ contains at
least n/12 edges (from Lemma 2). Finally we show that the same result holds
for all maximally planar graphs.

Theorem 1. Let G be a mazximally planar graph and let M be the set of matched
vertices in a maximal matching which uses only simple edges. Then |M| > n/6,
where n is the number of vertices of G.

4 Algorithm and Analysis

Before we can consider a particular embedding we must show how to obtain
all the graphs in the hierarchy, Go,Gq,...,Gg. Recall that Go = G is a fully
triangulated planar graph on n vertices. To construct G;41 from G; we find a
matching F; of G; and perform the graph contraction using the edges in F;. We
repeat this process until G;4; is a singleton graph.

Set E; for 0 <4 < k contains a maximal matching on the edges of G; with
some added constraints. It is important that after the contraction of the edges
in E; the resulting graph G; 1 remains fully triangulated. In order to preserve
the mental map, the three locality conditions must be maintained. Finally, in
order to maintain a small hierarchical height, |E;| must be a constant fraction
of the edges in G;. Thus, the constraints that we have on E; are as follows:

1. E; is a matching of simple edges.
2. Using the locality conditions, contracting E; yields a maximally planar G, 1.
3. |E;| > |[V(G;)]| /e, for some constant ¢ > 1.
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(@ (b)

Fig.2. Edges (u,v) and (z,y) in part (a) are both simple, do not share an endpoint,
and can be contracted as a part of a matching. After (u,v) is contracted to w in
part (b), edge (z,y) becomes a part of a separating triangle and so it should not be
contracted.

Note that condition (1) does not imply condition (2), see Fig. 2. Before
we proceed we show how to produce a set F; which satisfies the above three
conditions. Suppose we have graph G; and we want to create set F; so that
when all the edges in F; are contracted, we get G;41. We will contract simple
edges of G; one at a time. When an edge (u,v) is contracted, it is replaced by a
node w. The next time an edge is contracted, it cannot have w as an endpoint.
Let W; be the set of vertices that were created as a result of contractions in
phase ¢. The edges that we place in F; must be a matching, and so when a new
edge is considered for contraction, it cannot have an endpoint in W. Finally, let
S; be the set of vertices of G; of small degrees. More precisely, let S; = {v €
V(Gl) : dGi (’U) < 39}

In general, G; is transformed into G; 11 one edge contraction at a time using
the edges in F; in the order they were chosen. Call the intermediate graphs from
G; to Giy1, Gi = Gi0,Gi1,...,Gij = Gitq, and consider the algorithm on
Fig. 3.

Lemma 4. Let |V(G;)| = n;. Then |E;| > n;/50.

Proof Sketch:  For G,; with more than 3 vertices, |E;| > 1. Then consider the
sequence of intermediate graphs G;o,Gj1,...,G;; and let G;; have no more
edges that could be added to FE;. Observe that we have contracted exactly j
edges of G; and so |V(G; ;)| = n;—j. Then from Theorem 1 there are (n; —j)/12
edges in any maximal matching of G; ; which uses only simple edges. Consider
such a matching M. We are not allowed to add M edges with endpoints in W;.
But since |W;| = j, at most j of the edges in M can have endpoints in W.
Also note that if both endpoints of a simple edge in the matching have degrees
greater than or equal to 39 in G; they cannot be added to M. Note that if there
exist at most k nodes of degree greater than or equal to 39, then there are at
most k/2 such edges. It is easy to show that k& < n;/12: Suppose there are k
vertices of degrees 39 or more in G;. Since G; is fully triangulated, every vertex
has degree at least 3 and since GG; is maximally planar, the sum of the degrees
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match(Gi, E;)
7+0
G@j «— @G
Wi+ 0
while (S; # 0)
Let u; € S,', Si=8; \ {Uj}
if 3(uj,v5) € Gy j, s.t. v; € Wi and (uj,vy) is simple
By « Ei U{(u;,v5)}
Contract (uj,v;) to w; to get Gi j+1
Wi + W; U{w;}
j+—iji+1
return(G; ;j_1)

Fig. 3. Create G;4+1 from G; by contracting a sequence of edges in F;.

is twice the sum of the edges. Then 39k + 3(n; — k) < 6n; — 12. From this we
get that k < n;/12.

We stopped selecting good edges from G; when we got to graph G ; in which
we could not find a simple edge to contract. The only other types of edges that
might be available in G; ; but which we cannot take are those that were at some
point non-simple, but later became simple. Also, there can be at most j such
edges. Then (n; — j)/12 — 2j — n; /24 < 0 which implies j > n;/50. Thus, if we
cannot find another edge to add to the matching, we must have |E;| = j > n;/50
which completes the proof sketch. a

From the result above it follows that the height of the hierarchy is O(logn).
We next argue that one call to match(G;, E;) takes O(n; logn;) time, and since
n;+1 is a constant fraction of n;, the O(logn) calls to match(G;, F;) take
O(nlogn) time overall thus yielding the desired theorem:

Theorem 2. The clustering algorithm runs in O(nlogn) time and produces
a sequence of graphs Ggo,G1,...,Gk such that G; is mazimally planar for all
0<i<kandk=0O(logn).

5 Constructing the Embedding

After we obtain the combinatorial graphs Go, Gy, ..., Gk we have to embed them
in planes z =0,z = 1,...,2z = k. While constructing the combinatorial graphs
is a bottom up process, constructing the embedding is a top-down one. The first
graph to be embedded is G, which only has one vertex. We then expand the
edges in Ej_1 one at a time, in the reverse order of their insertion. We then
argue that this can be done in a way which guarantees that no crossings are
introduced. We need the following lemma.
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Fig. 4. Vertex w; and its neighbors in G; ;41 (a) before expansion (b) after expansion.

Lemma 5. Let G be a mazximally planar graph embedded in the plane without
crossings. For any v € V(G), there exists a ball of radius € > 0 such that if v is
placed anywhere inside that ball, the embedding has no crossings.

Proof Sketch:  The main idea is to consider the visibility region around vertex
v. Any point inside that region can “see” all the neighbors of v. It is not hard to
show that this region cannot be empty. This would imply the existence of € > 0

for which the ball of size € fits inside the visibility region. O
Theorem 3. Given combinatorial representations of graphs Gi,Gg_1,...,Gy
we can embed them in the planes z = k,z=k—1,...,2 =0 so that there are no

crossings in any of the drawings.

Proof Sketch:  We first embed Gy, in the plane z = k without crossings using
any straight-line drawing method. Suppose we have embedded Gy, Gi_1, ..., G;.
We will show how to embed G;_; given an embedding for G;. Recall that we
obtained G; from G;_; through a series of edge contractions from the edge set
E;_1 = {(uo,v0), (u1,v1), ... (uj,vj)} which produced graphs G;_1,0,Gi—1.1, .- -,
Gi—1,; = G;. We now reverse the process and expand G; back to G;_; through
the exact opposite sequence of expansions. Since we have an embedding for G;
in the plane z = %, we can embed G;_; ; in the plane z = 7 — 1. Next we expand
edge (uj,v;) by replacing vertex w; by the pair u;,v;. The resulting graph is
G, j—1 and we embed it without a crossing. We proceed until we get to G; 9. We
next show how to embed G;; given an embedding for G, 41, for 0 <1 < j.
Assume we have an straight-line embedding for G; ;41 without crossings on
the plane z = i. To get G;; we must expand vertex w; back to edge (u,v;).
Consider the subgraph on Fig. 4. Let « and y be the neighbors in common for
u; and v;. We then consider the ball of maximal radius around w; which sees all
neighbors (we know it is of radius € > 0 from Lemma 5). Consider a diameter in
this ball which is perpendicular to the line connecting  and y. Place u; and v;
on the two ends of the diagonal. O

We define the drawing of a clustered graph C = (G,T) as in [3]. Graph G
is drawn as usual, while for every node v € T the cluster is drawn as a simple
closed region R such that:
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— all sub-cluster regions of R are completely contained in the interior of R.

— all other cluster regions are completely contained in the exterior of R.

— if there is an edge e between two vertices contained in a cluster v, then the
drawing of e is completely contained in R.

Following the definitions of Eades et al., the drawing of edge e and region R
have an edge crossing if the drawing of e crosses the boundary of R more than
once. A drawing of a clustered graph is c-planar if there are no edge crossings
or edge-region crossings. Graphs with c-planar drawings are c-planar.

Theorem 4. The clustered graph C = (G,T) produced by our algorithm is c-
planar and a c-planar embedding can be obtained in O(n?) time.

Proof Sketch: It suffices to show that there exists a drawing of C' which has no
edge crossings and no edge-region crossings. Let us embed G using any planar
embedding algorithm. Define the region of a cluster, v to be the simple closed
curve around the subgraph of G induced by the cluster, G(v). By the definition
of the clustering in our algorithm, the subgraph G(v) is connected.

If u is a vertex not in cluster v, then u cannot be contained inside the region
R. Assume that u is contained in R. If we contract the edges of v in the order
defined by our algorithm, eventually u will be inside a triangular face. But then
none of the edges on that face can be contracted. This is a contradiction since v
is eventually contracted to one vertex.

Finally, since G is embedded in the plane without crossings and the regions
are connected there can be neither edge crossings nor edge-region crossings.
Therefore C' is c-planar and from [3] it follows that the c-planar embedding can
be produced in O(n?) time. 0
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