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Abstract. Combinations of graph drawing and map labeling problems
yield challenging mathematical problems and have direct applications,
e.g., in automation engineering. We call graph drawing problems in which
subsets of vertices and edges need to be labeled graph labeling problems.
Unlike in map labeling where the position of the objects is specified
in the input, the coordinates of vertices and edges in a graph labeling
problem instance have yet to be determined and thus create additio-
nal degrees of freedom. We concentrate on the Compaction and Labeling
(COLA) Problem: Given an orthogonal representation—as produced by
algorithms within the topology–shape–metrics paradigm—and some la-
bel information, the task is to generate a labeled orthogonal embedding
with minimum total edge length. We characterize feasible solutions of
the COLA problem extending an existing framework for solving pure
compaction problems. Based on the graph–theoretical characterization,
we present a branch–and–cut algorithm which computes optimally labe-
led orthogonal drawings for given instances of the COLA problem. First
computational experiments on a benchmark set of practical instances
show that our method is superior to the traditional approach of apply-
ing map labeling algorithms to graph drawings. To our knowledge, this is
the first algorithm especially designed to solve graph labeling problems.

1 Introduction

The area of graph drawing provides an ample variety of algorithms that pro-
duce aesthetically pleasing layouts of graphs [DETT99]. At the same time, there
are sophisticated techniques to generate provably good labelings of cartogra-
phic maps [WS]. Combinations of problems from both areas yield challenging
mathematical problems and have direct applications, e.g., the automatic layout
of state diagrams in automation engineering or the drawing of schematic maps
such as subway maps. Unlike in map labeling where the position of the objects is
specified in the input, the coordinates of vertices and edges in a graph drawing
problem instance have yet to be determined and thus create additional degrees
of freedom.
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We call the class of graph drawing problems where subsets of vertices and
edges have to be labeled graph labeling problems. So far, problems from this
class have only been attacked by applying map labeling algorithms to graph
drawings [KT97,IL97]. Figure 1 shows a labeled drawing for a state diagram;
first the underlying graph has been drawn, in a last step the labels have been
placed with an optimal labeling strategy. This forces some labels to either overlap
parts of the drawing or to be placed far away from the vertices to which they
should be attached. Another approach could be to model each label as a vertex of
fixed size and then apply a graph drawing algorithm which can cope with vertices
of different sizes. This treatment increases the vertex degrees and may destroy
existing structural properties in the graph—for the drawing of state diagrams
this leads to a loss of orthogonality and unacceptable area consumption.

Fig. 1. A state diagram; first drawn then labeled

In this paper we concentrate on a special graph labeling problem: the Com-
paction and Labeling (COLA) Problem. Graph drawing algorithms in the topo-
logy–shape–metrics paradigm [DETT99] produce in an intermediate step a so–
called orthogonal representation H, i.e., an extended planar representation. In
addition to the topological information, H contains for each edge information
about the order of bends and the angle formed with the following edge in the
appropriate face.

In the compaction phase of the paradigm, the goal is to minimize the area or
the total edge length of the resulting orthogonal drawing. The COLA problem
unifies the problem to find a drawing respecting the given shape and an addi-
tional labeling task: A set of labels, each of which is fixed in size, is assigned
to every vertex v. Each of the labels must be placed so that it touches v in at
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least one point and does not overlap other objects. We are given a set of k labels
L = {λ1, λ2, . . . , λk}, two functions w : L → Q, h : L → Q determining the
width and height of each label, and a third function a : L → V denoting the
vertex a(λ) to which the label λ should be attached. We are looking for a labeled
orthogonal embedding with short edges in which each label is placed correctly,
and no labels overlap the drawing.

In this paper we give a characterization of feasible solutions for the COLA
problem. We extend an existing framework for two–dimensional compaction pro-
blems in graph drawing [KM99]. Based on the graph–theoretical characteriza-
tion, we present a first branch–and–cut based algorithm prototype which com-
putes optimally labeled orthogonal drawings for given instances of the COLA
problem. To our knowledge, this is the first algorithm especially designed to solve
graph labeling problems.

Section 2 introduces the graph–theoretical framework. We give a formal defi-
nition of the COLA problem in Sect. 3 and show how to integrate the additional
labeling problem into the framework. In Sect. 4 we extend an optimal branch–
and–cut algorithm so that it solves the COLA problem to optimality and give
some first computational results. Finally, we conclude with Sect. 5. Due to space
limitations we can only give sketches of the proofs.

2 Constraint Graphs

In this section we introduce the graph–theoretical framework we have developed
to solve the COLA problem. An algorithm within the topology–shape–metrics
approach [DETT99] produces at the end of the second phase an orthogonal
representation H which contains the information about the topology and the
shape of the drawing. We call H simple if its number of bends is zero. Every
orthogonal representation can be transformed into a simple one by just replacing
each bend with an artificial vertex.

In order to compute a drawing for H, we must assign coordinates to the
vertices and bends. In this paper, we concentrate on pure orthogonal embeddings,
but our ideas can be adapted to other drawing standards such as Kandinsky–like
embeddings (introduced in [FK96]) or orthogonal box embeddings (subclasses are
the big node model from [FK97] and the TSS model from [BMT97], a related
class is the quasi–orthogonal model from [KM98]).

Pure orthogonal embeddings are only admissible for 4–planar graphs. Each
vertex and bend is mapped to a point and edge segments are mapped to horizon-
tal or vertical non–crossing line segments of some minimum length connecting
the images of their endpoints. A special case are pure orthogonal grid embed-
dings as defined in [Tam87]: Here, vertices and bends have integer coordinates.
As with representations, we call orthogonal embeddings simple if they do not
contain bends.

We first focus on the following subproblem of the COLA problem: Given
an orthogonal representation H, produce an orthogonal embedding Γ for H
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which is—among all such drawings—of minimum total edge length. Recently,
Patrignani proved the NP–hardness of this problem [Pat99].

Initial observation leads to the following notion: Incident edges of same di-
rection can be combined, forming the objects to compact. Let Γ be a simple
orthogonal drawing of a graph. It induces a partition of the set of edges E into
the horizontal set Eh and the vertical set Ev. A horizontal (resp. vertical) subseg-
ment in Γ is a connected component in (V, Eh) (resp. (V, Ev)). If the component
is maximally connected it is also referred to as a segment.

The following observations are crucial (see also Fig. 2).

– Each edge is a subsegment.
– Each vertex v belongs to one unique horizontal and one unique vertical

segment, denoted by hor(v) and vert(v).
– The limits of a subsegment s are given as follows: Let vl, vr, vb, and vt be

the leftmost, rightmost, bottommost, and topmost vertices on s. Then l(s) =
vert(vl), r(s) = vert(vr), b(s) = hor(vb), and t(s) = hor(vt).

Sh = fs1; s2; s3g Sv = fs4; s5g

i V (si) E(si) l(si) r(si) b(si) t(si)
1 fv1g fg s4 s4 s1 s1
2 fv2; v5g f(v2; v5)g s4 s5 s2 s2
3 fv3; v4g f(v3; v4)g s4 s5 s3 s3
4 fv1; v2; v3g f(v1; v2); (v2; v3)g s4 s4 s1 s3
5 fv4; v5g f(v4; v5)g s5 s5 s2 s3v1

v2

v3 v4

v5

s1

s2

s3

s4

s5

Fig. 2. Segments of a simple orthogonal grid drawing and its limits

We provide a necessary and sufficient condition for all feasible solutions of a
given instance of the compaction problem. This condition is based on existing
paths in the so–called constraint graphs. This pair of directed graphs is similar to
the layout graphs known from one–dimensional compaction strategies in VLSI
design [Len90]. Nodes in these graphs represent the segments; their weighted
arcs characterize relative positioning relations between the segments. We denote
by ci the coordinate of segment si. A weight ωij ∈ Q for an arc (si, sj) indicates
that the coordinate difference cj − ci must be at least ωij . Figure 3 shows an
example for a pair of constraint graphs. The arcs specify exactly the relative
relationships known from the shape of the graph: We call such special pairs of
constraint graphs 〈(Sv, Ah), (Sh, Av)〉 shape graphs or a shape description. Note
that each horizontal edge in the original graph defines a relative positioning
constraint between two vertical segments. Similarly, vertical edges determine
constraints between horizontal segments.

The characterization of feasible solutions for the two-dimensional compaction
problem is based on the following three observations:
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Fig. 3. An orthogonal grid embedding (dotted) and a pair of constraint graphs

1. The arcs of the shape graphs are contained in every pair of constraint graphs
corresponding to a drawing reflecting the given shape.

2. Generally, the information in the shape graphs is not sufficient to produce
an orthogonal embedding. If this is the case, however, we call such a pair of
constraint graphs complete.

3. There are in general many possibilities for extending the shape graphs to a
complete pair of constraint graphs.

We denote by si
+−→ sj a path of non–negative weight between si and sj . The

following is a precise characterization for complete pairs of constraint graphs in
terms of paths that must be contained in the arc sets: A pair of graphs is complete
if and only if both arc sets do not contain non–negative cycles and for every pair
of segments (si, sj) ∈ S × S one of the following four conditions holds:

1. r(si)
+−→ l(sj) 3. t(sj)

+−→ b(si) (1)

2. r(sj)
+−→ l(si) 4. t(si)

+−→ b(sj)

If one of the non–negative paths in (1) exists we also call the pair of segments
(si, sj) separated. Note that this definition generalizes the notion of completeness
as introduced for the pure compaction problem in [KM99]. There, we have the
special case that ωij = 1 for all (si, sj).

We can now express a one–to–one correspondence between these complete
extensions and orthogonal embeddings. On the basis of the following theorem,
the two–dimensional compaction task can be seen as the search for a complete
extension of the given shape graphs leading to minimum total edge length.

Theorem 1 ([KM99]). For each simple orthogonal embedding with shape
description σ = 〈(Sv, Ah), (Sh, Av)〉 there exists a complete extension τ =
〈(Sv, Bh), (Sh, Bv)〉 of σ and vice versa: Every complete extension τ = 〈(Sv, Bh),
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(Sh, Bv)〉 of a shape description σ = 〈(Sv, Ah), (Sh, Av)〉 corresponds to a simple
orthogonal embedding with shape description σ.

3 Modeling the Labels

In this section we extend the graph–theoretical formulation of the pure two–
dimensional compaction problem so that a feasible solution corresponds to a
labeled orthogonal embedding and thus to a solution of the COLA problem. We
define the characteristics of a solution for the COLA problem in order to state
the COLA problem formally.

Definition 1. A labeled orthogonal embedding ΓL for an orthogonal repre-
sentation H of a planar graph G = (V, E) and a label set L with functions
w, h : L → Q and a : L → V fulfills the following properties:

1. ΓL is an orthogonal embedding for H.
2. A label λ ∈ L has size w(λ) × h(λ) and its image intersects with the image

of vertex a(λ) at at least one point.
3. A label λ ∈ L does neither overlap nor include other objects.

Definition 2. Compaction and Labeling (COLA) problem.
Given an orthogonal representation H for a planar graph G = (V, E), a label
set L with functions w, h : L → Q, and a : L → V , find a labeled orthogonal
embedding for H with minimum total edge length.

We model each label λ as a rectangle bounded by the segments lλ, rλ, tλ, and
bλ as in Fig. 4. Its limits are linked by two arcs (lλ, rλ) ∈ Ah and (bλ, tλ) ∈ Av

of weight w(λ) and h(λ), respectively. Unlike the arcs from the previous section,
the minimum distance requirements for this type of arcs are determined by the
width and height of the corresponding label. Observe that we use the same sort
of segments we have introduced in the previous section for the solution of the
compaction problem. At this point we introduce a set O containing the objects
to compact. It consists of the segments corresponding to consecutive edges of
same direction and all the labels. This gives us an important property free of
charge: If we can ensure that—as in Sect. 2—all pairs of distinct objects in O are
separated, the labels will neither overlap nor will they be crossed by edges of the
graph. We will achieve this by giving a more general definition of completeness.

We additionally have to guarantee that each label is drawn in the neigh-
borhood of the vertex to which it belongs. Figure 5 shows the possibilities we
want to capture with our formulation. According to Def. 1 a label can be placed
anywhere close to a vertex, i.e., it must touch the vertex at at least one point.

The relative positioning of label λ to its vertex v = a(λ) can be equivalently
expressed by the following four conditions:

1. The left side of λ must not lie to the right side of v.
2. The right side of λ must not lie to the left side of v.
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Fig. 5. Possibilities for placing a label
λ in the neighborhood of a(λ)

3. The bottom side of λ must not lie above the top side of v.
4. The top side of λ must not lie below the bottom side of v.

In our graph–theoretical framework this translates into four special arcs of
zero weight that have to be included in the pair of constraint graphs (see Fig. 5).
For a label λ with a(λ) = v these are (lλ, rv), (lv, rλ), (bλ, tv), and (bv, tλ),
linking the limits of the label to the limits of the vertex. Note that we model
vertices whose images are boxes of non–zero size in a similar way as the labels
by including them in O and linking them appropriately to the segments that
correspond to incident edges.

Having introduced these new types of arcs, we can extend the notion of shape
description as defined in Sect. 2 to integrate the labels in the framework.

Definition 3. A labeled shape description σL of an orthogonal representation
H with label information L, w, h, and a is a tuple 〈(Sv ∪ SLv

, Ah ∪ ALh
), (Sh ∪

SLh
, Av ∪ ALv )〉 where 〈(Sv, Ah), (Sh, Av)〉 is a shape description for H and

SLv
=

⋃

λ∈L

{lλ, rλ}, ALh
=

⋃

λ∈L

{(lλ, rλ), (lλ, ra(λ)), (la(λ), rλ)},

SLh
=

⋃

λ∈L

{bλ, tλ}, ALv =
⋃

λ∈L

{(bλ, tλ), (bλ, ta(λ)), (ba(λ), tλ)} .

Clearly, each instance of the COLA problem uniquely determines a labeled
shape description. We can now give a more general formulation of completeness
by considering all objects in the set O: A pair of labeled constraint graphs is
complete if and only if it does not contain a non–negative cycle and each distinct
pair of objects is separated. This generalization leads to the following main result.

Theorem 2. For each simple labeled orthogonal embedding with shape descrip-
tion σ = 〈(Sv, Ah), (Sh, Av)〉 and label information L, w, h, a there exists a com-
plete labeled extension τ = 〈(Sv ∪SLv

, Ah ∪ALh
), (Sh ∪SLh

, Av ∪ALh
)〉 of σ and

vice versa: Every complete labeled extension τ = 〈(Sv ∪ SLv
, Bh ∪ ALh

), (Sh ∪
SLh

, Bv ∪ ALh
)〉 of a labeled shape description σ = 〈(Sv ∪ SLv

, Ah ∪ ALh
), (Sh ∪

SLh
, Av ∪ALh

)〉 corresponds to a simple labeled orthogonal embedding with shape
description σ.
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Proof (Sketch). The proof is similar to the one in [KM99, Theorem 1], so we give
only a sketch of it: For the forward direction, we construct a complete exten-
sion of the given labeled shape description σ by inserting the missing informa-
tion according to the visibility properties in the drawing. Clearly, this excludes
non–negative cycles. The separation properties are also fulfilled for all segments
because otherwise there would be overlapping objects in the drawing, which is
not the case.

For the other direction, we give a constructive proof of how to build a labe-
led orthogonal embedding with a given complete extension of a labeled shape
description: As in the proof for the pure compaction setting, we make use of
a length assignment to assign the coordinates to the segments—and thus to
the vertices, bends, and labels. Again, we are able to show that the resulting
drawing is a labeled orthogonal embedding reflecting the shape of H and the
labeling information given in L, w, h, and a.

4 Optimal Graph Labeling

In this section we introduce our the ILP formulation to solve the COLA problem
to optimality and present first computational results.

One way to characterize the set of complete extensions is by means of an
integer linear program. We introduce a binary variable xij for each arc (si, sj)
that might be in some extension of the given labeled shape description σL =
〈(Sv, Ah), (Sh, Av)〉. If (si, sj) is contained in the extension, the corresponding
variable xij is one, otherwise zero. We refer by X to the set of binary variables.
Additionally, there is a variable cs ∈ Q for each segment s ∈ S denoting the
coordinate of s. The ILP then reads as follows:

min
∑

e∈Eh

cr(e) − cl(e) +
∑

e∈Ev

ct(e) − cb(e) subject to (2)

xro,lp + xrp,lo + xto,bp
+ xtp,bo

≥ 1 ∀(o, p) ∈ O × O, o 6= p (2.1)
cj − ci ≥ ωij ∀(si, sj) ∈ Ah ∪ Av (2.2)

cj − ci − (M + ωij)xij ≥ −M ∀xij ∈ X (2.3)
xij ∈ {0, 1} ∀xij ∈ X (2.4)

Inequalities (2.1) model the characterization of separation, i.e., the existence
of necessary paths between distinct objects in an extension. Inequalities (2.2)
force the coordinates to obey the distance rules coded by the weighted arcs in
the underlying labeled shape description; the value ωij denotes the minimum di-
stance between si and sj . The same must hold true for the potential additional
arcs: Whenever a variable xij is one, we want an inequality of type (2.2), other-
wise there should be no restriction on the coordinate variables. This situation is
modeled by inequalities (2.3) with the help of a big constant M . We have shown
in [KM99] that inequalities (2.2) and (2.3) ensure the absence of non–negative
cycles in the extension.
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Note that we do not introduce additional decision variables to integrate the
labeling task; the choice of where to place a label is performed by the separa-
tion properties. A label can be placed wherever it does not interfere with other
objects as long as it stays in the neighborhood of the vertex to which it belongs.
Moreover, we do not restrict the label placement to a finite number of prescri-
bed places. Of course, the number of possibly non–separated segments is much
higher than in an instance of a pure compaction problem.

Like the one–to–one correspondence between complete extensions and ortho-
gonal embeddings there is a one–to–one correspondence between feasible soluti-
ons of the ILP and complete extensions of the given labeled shape graphs:

Theorem 3. For each feasible solution (x, c) of the ILP for a given labeled shape
description σL there is a labeled orthogonal embedding with appropriate shape and
label information and vice versa.

Proof (Sketch). A solution of the ILP corresponds to a complete extension of
the labeled shape description σ with appropriate length assignment. The forward
direction follows with Theorem 1. Conversely, we can use the information of a
labeled embedding to construct a feasible solution of the ILP. We can show that
none of the inequalities is violated and that the value of the objective function
equals the total edge length.

We have extended the existing branch–and–cut framework for the pure com-
paction problem to solve instances of the COLA problem and have developed
a prototype of an optimal compaction and labeling algorithm. We have tested
the algorithm with real–world instances from the area of automation engineering
and our first computational experiments indicate that we are able to draw and
label the state diagrams within moderate computation time. Figure 6 shows the
output of the optimal algorithm for the example of Fig. 1. It took the algorithm
prototype 29 seconds to compute the optimal solution.

5 Conclusions and Future Plans

We have introduced a combined compaction and labeling problem arising from
a practical application in automation engineering. The task is to simultaneously
assign consistent edge lengths for a given orthogonal representation which de-
termines the shape of the drawing and to label subsets of vertices. The resulting
drawing should have small total edge length and all labels should be placed at
the corresponding vertices so that they do not overlap other objects. Already
the pure compaction task is NP–hard.

We have integrated the labeling problem into an existing graph–theoretical
framework for solving two–dimensional compaction problems and have intro-
duced the notion of labeled orthogonal embedding. Inside this framework, we
have devised a branch–and–cut algorithm that produces optimal solutions for
the COLA problem. Note that we do not require a label to be placed on a finite
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Fig. 6. The example from Fig. 1, drawn with the optimal algorithm

set of prescribed places but allow for a continuous movement of the label around
the vertex to which it is attached.

In the near future, we will provide the implementation of the branch–and–
cut algorithm as a module inside the AGD library [AGD99]. We will extensively
test the optimal algorithm on real world and randomly generated instances.
We will try to develop heuristics in order to apply them at each node in the
branch–and–cut tree and want to investigate a possible extension to edge la-
beling problems. Furthermore, we plan to extend our framework so that it can
accomplish some postprocessing tasks like improving the number of bends or
crossings and decreasing the sizes of vertices.
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