Skip to main content

A Parallel Approximation Algorithm for the Max Cut Problem on Cubic Graphs

  • Conference paper
  • First Online:
Advances in Computing Science — ASIAN’99 (ASIAN 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1742))

Included in the following conference series:

  • 270 Accesses

Abstract

We deal with the maximum cut problem on cubic graphs and we present a simple O(log n) time parallel algorithm, running on a CRCW PRAM with O(n) processors. The approximation ratio of our algorithm is \( 1.\bar 3 \) and improves the best known parallel approximation ratio, i.e. 2, in the special case of cubic graphs.

This author was partially supported by the Italian National Research Council (CNR).

Part of this research has been done while visiting Dept. of Computer Science, University of Rome “La Sapienza”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Calamoneri, T.: Does Cubicity Help to Solve Problems Ph.D. Thesis, University of Rome “La Sapienza”,XI-2–97, 1997.

    MathSciNet  Google Scholar 

  2. Cole, R. Vishkin, U.: Deterministic Coin Tossing with applications to optimal parallel list ranking, Information and Control, 70(1), pp. 32–53, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  3. Delorme, C. Poljak, S.: Combinatorial properties and the complexity of a max-cut approximation, European Journal of Combinatorics, 14, pp. 313–333, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  4. Fernandez de la Vega, W. Kenyon, C.: A Randomized Approximation Scheme for Metric MAX-CUT, IEEE Symposium on Foundations of Computer Science (FOCS98), 1998.

    Google Scholar 

  5. Frieze, A.M. Jerrum, M.: Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION, Algorithmica, 18(1), pp. 67–81, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  6. Garey, M.R. Johnson, D.S.: Computers and Intractability: a Guide to Theory of NP-completeness, W.H.Freeman, 1979.

    Google Scholar 

  7. Garey, M.R. Johnson, D.S. Stockmayer, L.: Some Simplified NP Complete Graph Problems, Theor. Comput. Sci., 1, pp. 237–267, 1976.

    Article  MATH  Google Scholar 

  8. Goemans, M.X. Williamson, D.P.: 878-Approximation Algorithms for MAX CUT and MAX 2SAT, Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing (STOC94), pp. 422–431, 1994.

    Google Scholar 

  9. Greenlaw, R. Petreschi, R.: Cubic graphs, ACM Computing Surveys, 27(4), pp. 471–495, 1995.

    Article  Google Scholar 

  10. Jájá, J.: An Introduction to Parallel Algorithms. Addison Wesley, 1992.

    Google Scholar 

  11. Kann, V. Khanna, S. Lagergren, J. Panconesi, A.: On the Hardness of ApproximatingMax k-Cut and its Dual, Chicago Journal of Theoretical Computer Science, 1997.

    Google Scholar 

  12. Karlo_, H.: How Good is the Goemans-Williamson MAX CUT Algorithm?, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing (STOC96), pp. 427–434, 1996.

    Google Scholar 

  13. Luby, M.: A Simple Parallel Algorithm for the Maximal Independent Set, SIAM J. on Computing, 15, pp. 1036–1053, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  14. Nesetril, J. Turzik, D.: Solving and Approximating Combinatorial Optimization Problems (Towards MAX CUT and TSP), Proc. of SOFSEM97: Theory and Practics of Informatics, LNCS 1338, pp. 70–81, 1997.

    Google Scholar 

  15. Papadimitriou, C.H. and Yannakakis, M.: Optimization, Approximation, and Complexity Classes, J. Comput. System Sci., 43, pp. 425–440, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  16. Poljak, S.: Integer Linear Programs and Local Search for Max-Cut, SIAM Journal on Computing, 24(4), pp. 822–839, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  17. Poljak, S. Tuza, Z.: The max-cut problem-a survey Special Year on Combinatorial Optimization, DIMACS series in Discrete Mathematics and Theoretical Computer Science, 1995.

    Google Scholar 

  18. Yannakakis, M.: Node-and Edge-Deletion NP-Complete Problems. Proc. 10th Annual ACM Symp. on the Theory of Comp. (STOC78), ACM New York, 1978, pp 253–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Calamoneri, T., Finocchi, I., Petreschi, R., Manoussakis, Y. (1999). A Parallel Approximation Algorithm for the Max Cut Problem on Cubic Graphs. In: Thiagarajan, P.S., Yap, R. (eds) Advances in Computing Science — ASIAN’99. ASIAN 1999. Lecture Notes in Computer Science, vol 1742. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46674-6_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-46674-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66856-5

  • Online ISBN: 978-3-540-46674-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics