Skip to main content

A Unifying Framework for Model Checking Labeled Kripke Structures, Modal Transition Systems, and Interval Transition Systems

  • Conference paper
  • First Online:
Foundations of Software Technology and Theoretical Computer Science (FSTTCS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1738))

Abstract

We build on the established work on modal transition systems and probabilistic specifications to sketch a framework in which system description, abstraction, and finite-state model checking all have a uniform presentation across various levels of qualitative and quantitative views together with mediating abstraction and concretization maps. We prove safety results for abstractions within and across such views for the entire modal mu-calculus and show that such abstractions allow for some compositional reasoning with respect to a uniform family of process algebras à la CCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Baier. Polynomial Time Algorithms for Testing Probabilistic Bisimulation and Simulation. In Proceedings of CAV’96, number 1102 in Lecture Notes in Computer Science, pages 38–49. Springer Verlag, 1996. 370

    Google Scholar 

  2. C. Baier, M. Kwiatkowska, and G. Norman. Computing probability bounds for linear time formulas over concurrent probabilistic systems. Electronic Notes in Theoretical Computer Science, 21:19 pages, 1999. 378

    Google Scholar 

  3. E. M. Clarke and E. M. Emerson. Synthesis of synchronization skeletons for branching time temporal logic. In D. Kozen, editor, Proc. Logic of Programs, volume 131 of LNCS. Springer Verlag, 1981. 369

    Google Scholar 

  4. E. M. Clarke, O. Grumberg, and D. E. Long. Model Checking and Abstraction. In 19th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 343–354. ACM Press, 1992. 369

    Google Scholar 

  5. Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation of reactive systems. ACM Transactions on Programming Languages and Systems, 19(2), 1997. 376

    Google Scholar 

  6. R. de Nicola and F. Vaandrager. Three Logics for Branching Bisimulation. Journal of the Association of Computing Machinery, 42(2):458–487, March 1995. 372

    MATH  Google Scholar 

  7. P. R. Halmos. Measure Theory. D. van Norstrand Company, 1950. 370

    Google Scholar 

  8. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press. Distinguished Dissertation Series, 1996. 370

    Google Scholar 

  9. M. Huth. The Interval Domain: A Matchmaker for aCTL and aPCTL. In M. Mislove, editor, 2nd US-Brazil joint workshop on the Formal Foundations of Software Systems held at Tulane University, New Orleans, Louisiana, November 13-16, 1997, volume 14 of Electronic Notes in Theoretical Computer Science. Elsevier, 1999. 378

    Google Scholar 

  10. B. Jonsson and K. G. Larsen. Specification and Refinement of Probabilistic Processes. In Proceedings of the International Symposium on Logic in Computer Science, pages 266–277. IEEE Computer Society, IEEE Computer Society Press, July 1991. 370, 370, 371, 372, 378

    Google Scholar 

  11. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science, 27:333–354, 1983. 373

    Article  MATH  MathSciNet  Google Scholar 

  12. K. G. Larsen. Modal Specifications. In J. Sifakis, editor, Automatic Verification Methods for Finite State Systems, number 407 in Lecture Notes in Computer Science, pages 232–246. Springer Verlag, June 12-14, 1989 1989. International Workshop, Grenoble, France. 370, 373, 373, 373

    Google Scholar 

  13. K. G. Larsen and A. Skou. Bisimulation through Probabilistic Testing. Information and Computation, 94(1):1–28, September 1991. 370, 378

    Article  MATH  MathSciNet  Google Scholar 

  14. K. G. Larsen and B. Thomsen. A Modal Process Logic. In Third Annual Symposium on Logic in Computer Science, pages 203–210. IEEE Computer Society Press, 1988. 370, 370, 372, 372, 373, 377, 377

    Google Scholar 

  15. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993. 369

    Google Scholar 

  16. R. Milner. Communication and Concurrency. Series in Computer Science. Prentice-Hall International, 1989. 369, 372, 377, 377, 377

    Google Scholar 

  17. R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, 1966. 372

    MATH  Google Scholar 

  18. C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate transformers. ACM Transactions on Programming Languages and Systems, 18(3):325–353, May 1996. 378

    Article  Google Scholar 

  19. M. Narashima, R. Cleaveland, and P. Iyer. Probabilistic Temporal Logics via the Modal Mu-Calculus. In W. Thomas, editor, Foundations of Software Science and Computation Structures, volume 1578 of Lecture Notes in Computer Science, pages 288–305. Springer Verlag, March 1999. 379

    Chapter  Google Scholar 

  20. J. P. Quielle and J. Sifakis. Specification and verification of concurrent systems in cesar. In Proceedings of the fifth International Symposium on Programming, 1981. 369

    Google Scholar 

  21. D. S. Scott. Lattice Theory, Data Types and Semantics. In Formal Semantics of Programming Languages, pages 66–106. Prentice-Hall, 1972. 372

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huth, M. (1999). A Unifying Framework for Model Checking Labeled Kripke Structures, Modal Transition Systems, and Interval Transition Systems. In: Rangan, C.P., Raman, V., Ramanujam, R. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1999. Lecture Notes in Computer Science, vol 1738. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46691-6_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-46691-6_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66836-7

  • Online ISBN: 978-3-540-46691-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics