Abstract
The logical characterization of the strong and the weak (ignoring silent actions) versions of resource bisimulation are studied. The temporal logics we introduce are variants of Hennessy-Milner Logics that use graded modalities instead of the classical box and diamond operators. The considered strong bisimulation induces an equivalence that, when applied to labelled transition systems, permits identifying all and only those systems that give rise to isomorphic unfoldings. Strong resource bisimulation has been used to provide nondeterministic interpretation of finite regular expressions and new axiomatizations for them. Here we generalize this result to its weak variant.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baeten, J.C.M., Bergstra, J.A.: Process Algebra with a Zero Object. In Proc. Concur’ 90, LNCS 458, pp. 83–98, 1990. 383
Browne, M.C., Clarke, E., Grümberg O.: Characterizing Finite Kripke Structures in Propositional Temporal Logic. Theoretical Computer Science 59(1,2), pp. 115–131, 1998. 381
Baeten, J., Weijland, P.: Process Algebras. Cambridge University Press, 1990.
Corradini, F., De Nicola, R. and Labella, A.: Fully Abstract Models for Nondeterministic Regular Expressions. In Proc. Concur’95, LNCS 962, Springer Verlag, pp. 130–144, 1995.
Corradini, F., De Nicola, R. and Labella, A.: A Finite Axiomatization of Non deterministic Regular Expressions. Theoretical Informatics and Applications. To appear. Available from: ftp://rap.dsi.unifi.it/pub/papers/FinAxNDRE. Abstract in FICS, Brno, 1998.
Corradini, F., De Nicola, R. and Labella, A.: Models for Non deterministic Regular Expressions. Journal of Computer and System Sciences. To appear. Available from: ftp://rap.dsi.unifi.it/pub/papers/NDRE. 381, 382, 383, 385, 391, 391
Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite State Concurrent Systems using Temporal Logic Specifications. ACM Toplas 8(2), pp. 244–263, 1986. 381
Cleaveland, R., Parrow, J., Steffen, B.: The Concurrency Workbench. ACM Toplas 15(1), pp. 36–72, 1993. 381
D’Agostino, G.: Modal Logics and non well-founded Set Theories: translation, bisimulation and interpolation. Thesis, Amsterdam, 1998. 391, 391
De Nicola, R.: Extensional Equivalences for Transition Systems. Acta Informatica 24, pp. 211–237, 1987. 381
De Nicola, R., Labella, A.: Tree Morphisms and Bisimulations, Electronic Notes in TCS 18, 1998.
De Nicola, R., Vaandrager, F.: Three Logics for Branching Bisimulation. Journal of ACM 42(2), pp. 458–487, 1995. 381
Emerson, E.H., Halpern, Y.: “Sometimes” and “not never” revisited: On branching versus linear time temporal logic. Journal of ACM 42, pp. 458–487, 1995. 381
Fattorosi-Barnaba, M., De Caro, F.: Graded Modalities, I. Studia Logica 44, pp. 197–221, 1985. 382, 386
Hennessy, M., Milner, R.: Algebraic Laws for Nondeterminism and Concurrency. Journal of ACM 32, pp. 137–161, 1985. 381, 386
Hoare, C.A.R.: Communicating Sequential Processes, Prentice Hall, 1989.
van Glabbeek, R.J.: Comparative Concurrency Semantics and Refinement of Actions. Ph.D. Thesis, Free University, Amsterdam, 1990. 381
Milner, R.: Communication and Concurrency, Prentice Hall, 1989. 389
Manna, Z., and Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems. Springer Verlag, 1992. 381
Park, D.: Concurrency and Automata on Infinite sequences. In Proc. GI, LNCS 104, pp. 167–183, 1981.
Salomaa, A.: Two Complete Axiom Systems for the Algebra of Regular Events. Journal of ACM 13, pp. 158–169, 1966. 382
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Corradini, F., De Nicola, R., Labella, A. (1999). Graded Modalities and Resource Bisimulation. In: Rangan, C.P., Raman, V., Ramanujam, R. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1999. Lecture Notes in Computer Science, vol 1738. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46691-6_31
Download citation
DOI: https://doi.org/10.1007/3-540-46691-6_31
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66836-7
Online ISBN: 978-3-540-46691-8
eBook Packages: Springer Book Archive