Abstract
We identify a subclass of timed automata and develop its theory. These automata, called product interval automata, consist of a network of timed agents. The key restriction is that there is just one clock for each agent and the way the clocks are read and reset is determined by the distribution of shared actions across the agents. We show that the resulting automata admit a clean theory in both logical and languagetheoretic terms. It turns out that the study of these timed automata can exploit the rich theory of partial orders known as Mazurkiewicz traces. An important consequence is that the partial order reduction techniques being developed for timed automata [4,10] can be readily applied to the verification tasks associated with our automata. Indeed we expect this to be the case even for the extension of product interval automata called distributed interval automata.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Alur, D. L. Dill: A theory of timed automata, Theoretical Computer Science 126: 183–235 (1994). 60, 61, 63, 68
R. Alur, L. Fix, T. A. Henzinger: Event-clock automata: a determinizable class of timed automata, Proc. 6th International Conference on Computer-aided Verification, LNCS 818, 1–13, Springer-Verlag (1994). 61, 62, 70
R. Alur, T. A. Henzinger: Logics and Models of Real Time: A Survey, in Real-Time: Theory in Practice, J. W. de Bakker, H. Huizing, W.-P. de Roever, G. Rozenberg (Eds.), LNCS 600, 74–106, (1992). 61
J. Bengtsson, B. Jonsson, J. Lilius, W Yi: Partial Order Reductions for Timed Systems, Proc. CONCUR’ 98, LNCS 1466 (1998). 60, 61
B. Berthomieu, M. Diaz: Modelling and Verification of Time Dependent Systems Using Time Petri Nets, IEEE trans. on Soft. Engg. Vol 17, No. 3, March 1991. 70
V. Diekert, G. Rozenberg: The Book of Traces, World Scientific, Singapore (1995). 61
D. D’Souza, P. S. Thiagarajan: Distributed Interval Automata, Internal Report TCS-98-3, Chennai Mathematical Institute (1998). (available at http://www.smi.ernet.in/techreps/) 62, 63, 70, 70
W. Ebinger, A. Muscholl: Logical definability on infinite traces, Theoretical Computer Science 154: 67–84 (1996).
T. A. Henzinger, P. W. Kopke, A. Puri, P. Varaiya: What’s decidable about hybrid automata?, Proc. 27th Annual Symposium on Theory of Computing, 373–382, ACM Press (1995).
M. Minea: Partial Order Reduction for Model Checking of Timed Automata. To appear in the Proceedings of CONCUR’99. 60, 61
P. Gastin, A. Petit: Asynchronous cellular automaton for infinite traces, Proceedings of ICALP’ 92, LNCS 623, 583–594 (1992). 62, 69
R. Gerth, D. Peled, M. Vardi, P. Wolper: Simple On-the-fly Automatic Verification of Linear Temporal Logic. Proc. 15th IFIP WG 6.1 Int. Workshop on Protocol Specification, Testing, and Verification. North-Holland Publ. (1995).
T. A. Henzinger: It’s About Time: Real-Time Logics Reviewed, Proc. CONCUR’ 98, LNCS 1466, 366–372 (1998). 61
T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens: The regular real-time languages, Proc. 25th International Colloquium on Automata, Languages, and Programming 1998, LNCS 1443, 580–591 (1998). 61
J. G. Henriksen, P. S. Thiagarajan: A Product Version of Dynamic Linear Time Temporal Logic, Proc. CONCUR’ 97, LNCS 1243, 45–58, (1997). 65, 69
N. Klarlund, M. Mukund, M. Sohoni: Determinizing Büchi Asynchronous Automata, Proceedings of FSTTCS 15, LNCS 1026, 456–470 (1995).
O. Maler, A. Pnueli: Timing Analysis of Asynchronous Circuits using Timed Automata, in Proc. CHARME’ 95, LNCS 987, 189–205 (1995). 61, 68
M. Mukund, P. S. Thiagarajan: Linear Time Temporal Logics over Mazurkiewicz Traces, Proc. MFCS 96, LNCS 1113, 62–92 (1996). 69
J.-F. Raskin, P.-Y. Schobbens: State-clock Logic: A Decidable Real-Time Logic, Proc. HART’ 97: Hybrid and Real-Time Systems, LNCS 1201, 33–47 (1997). 61
P. S. Thiagarajan: A Trace Consistent Subset of PTL, Proc. CONCUR’ 95, LNCS 962, 438–452 (1995). 68
W. Thomas: Automata on Infinite Objects, in J. V. Leeuwen (Ed.), Handbook of Theoretical Computer Science, Vol. B, 133–191, Elsevier Science Publ., Amsterdam (1990). 64
Th. Wilke: Specifying Timed State Sequences in Powerful Decidable Logics and Timed Automata, in Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS 863, 694–715 (1994). 62
G. Winskel, M. Nielsen: Models for Concurrency, in S. Abramsky, D. Gabbay (Eds.) Handbook of Logic in Computer Sc., Vol. 3, Oxford Univ Press (1994).
W. Yi, B. Jonsson: Decidability of Timed Language-Inclusion for Networks of Real-Time Communicating Sequential Processes, in Proc. FST&TCS 94, LNCS 880 (1994). 61
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
D’Souza, D., Thiagarajan, P.S. (1999). Product Interval Automata: A Subclass of Timed Automata. In: Rangan, C.P., Raman, V., Ramanujam, R. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1999. Lecture Notes in Computer Science, vol 1738. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46691-6_5
Download citation
DOI: https://doi.org/10.1007/3-540-46691-6_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66836-7
Online ISBN: 978-3-540-46691-8
eBook Packages: Springer Book Archive