Lecture Notes in Computer Science 1646
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Springer

Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Bernhard Westfechtel

Models and Tools for Managing Development Processes

Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Author
Bernhard Westfechtel
Department of Computer Science III, Aachen University of Technology
Ahornstr. 55, 52074 Aachen, Germany
E-mail: bernhard@i3.informatik.rwth-aachen.de

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Westfechtel, Bernhard:

Models and tools for managing development processes / Bernhard Westfechtel. -
Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 1999
(Lecture notes in computer science ; Vol. 1646)
ISBN 3-540-66756-3

CR Subject Classification (1998): D.2, K.6, H.5.3

ISSN 0302-9743
ISBN 3-540-66756-3 Springer-Verlag Berlin Heidelberg New York

[^0]
Preface

The development of products in disciplines such as mechanical, electrical, or software engineering is a challenging task. Costs have to be reduced, the time-to-market has to be shortened, and quality has to be improved. Skilled engineers and sophisticated tools for supporting technical work are necessary prerequisites, yet they are not sufficient for meeting these ambitious goals. In addition, the work of developers must be coordinated so that they cooperate smoothly. To this end, the steps of the development process have to be planned, an engineer executing a task must be provided with documents and tools, the results of development activities have to be fed back to management which in turn has to adjust the plan accordingly, the documents produced in different working areas have to kept consistent with each other, etc.

This book reports on models and tools for managing development processes. It provides both a survey of the current state of the art and presents our own contributions. The material covered in this book is based on research in different engineering disciplines (mechanical, software, and chemical engineering). It presents a unified view on the management of development processes in these disciplines.

The current state of the art is characterized by a large variety of tools for process management. Project management systems support classical management functions such as planning, organizing, and controlling by means of project plans (e.g., PERT charts). Engineering/product data management systems or software configuration management systems are concerned with the products of development processes such as designs, manufacturing plans, and NC programs in mechanical engineering; or requirements definitions, software architectures, and modules in software engineering. Workflow management systems manage the flow of work according to a defined procedure that coordinates activities such that defined objectives are achieved by set deadlines. Process-centered software engineering environments drive the software development process according to a process model that defines the steps to be executed and the constraints on their ordering.

Unfortunately, these tools still suffer from several limitations. Project management systems operate at a too coarse-grained level and do not take the products of development processes into account. Conversely, engineering/product data management systems and software configuration management systems focus on products, but neglect the management of activities. Workflow management
systems and process-centered software engineering environments are often too inflexible and do not adequately support the dynamics of development processes.

We present an integrated approach which addresses these shortcomings. We have developed models for managing development processes that consider products, activities, and resources in an integrated way. Moreover, the models are designed to cope with the dynamics of development processes. A development process may rarely be defined in advance; rather, it constantly evolves during execution. Some reasons are given below:

- The tasks to be performed depend on the product structure which is determined only during development. For example, the architecture of a software system defines the modules to be implemented and tested.
- Development rarely proceeds smoothly from one phase to the next. Rather, errors and inadequate solutions which are detected in later phases are fed back into earlier phases. The consequences of feedback may be hard to predict, and may range from small local changes to large global ones.
- "Walking on water and writing software from a specification are easy if both are frozen." In reality, however, development must be prepared to cope with continuous changes to the requirements.
- In order to reduce development efforts, organizations strive for reusing previous results. Then, the development process depends on which results can be reused to what extent. This knowledge is often not available beforehand.
- If milestones have to be accomplished earlier than expected, it may be necessary to accelerate development on critical paths, assign more developers to the project, etc.
- Organizations are constantly striving for improving their processes resulting in optimized process definitions. It is desirable to propagate these optimizations into ongoing development processes.
- Current development methods such as concurrent and simultaneous engineering accelerate development by increasing parallelism. To be successful, they require the sophisticated coordination of engineers working on different parts of a product, or in different working areas such as design and manufacturing planning.

We have developed a management system which provides customized environments for its different kinds of users. The management environment supports managers in coordinating technical activities by presenting graphical, global views, and commands for planning, analyzing, controlling, and monitoring. Developers use the work environment which maintains agendas of tasks, manages a workspace of documents for each task, and offers a uniform interface for activating development tools in order to carry out technical activities. Finally, the modeling environment is used to adapt the management system to a specific application domain. So far, we have studied applications in mechanical and software engineering; our current work also addresses chemical engineering.

The data maintained by the management system and the operations performed on these data are fairly complex. This calls for a formal specification at
a high level of abstraction. We have selected attributed graphs as the underlying data model because they are ideally suited for representing management data such as version histories, configurations of interdependent documents, and task nets. A programmed graph rewriting system serves to specify operations on these graphs in terms of complex graph transformations. Management tools may be generated from this operational specification, avoiding the need for coding in a conventional, rather low-level programming language.

This book is composed of four parts. Part I introduces basic notions such as development, process, or management. Furthermore, it provides an overview of our approach to the management of development processes and compares it to related work.

Part II surveys the current state of the art. We draw a "grand picture" of models and tools for process management. To organize the discussion, we present taxonomies for classifying and comparing existing approaches. Furthermore, we apply these taxonomies to sample sets of process management systems in order to illustrate the spectrum of approaches developed in this field. Finally, we also attempt to assess the current state of the art.

Part III summarizes our work in SUKITS, an interdisciplinary project that was carried out by computer scientists and mechanical engineers at Aachen University of Technology. Its overall result was a management system which was applied to mechanical engineering within the project, but can be applied to other application domains as well. The management system supports integrated management of products, activities, and resources and takes various aspects of dynamics into account (in particular, product-dependent task nets, feedback, and simultaneous engineering). The management system was fully implemented, and it was successfully applied to non-trivial scenarios.

Part IV presents our ongoing work toward a universal and adaptable management model. This work was carried out in the final stages of SUKITS and subsequently in the IMPROVE project (a Collaborative Research Council dealing with development processes in chemical engineering).

This book is a revised version of my habilitation thesis. Many people have contributed to the work presented here. Prof. Manfred Nagl has been advising me for more than a decade. During this period, we have had many fruitful discussions; I have benefited much from his continuous inspiration. Prof. Carlo Ghezzi (Politecnico di Milano, Italy) and Prof. Theo Härder (University of Kaiserslautern, Germany) both agreed spontaneously to act as co-advisors in spite of their heavy workload.

My thesis was carefully reviewed for publication in the LNCS series. In particular, the review helped me considerably in improving the motivation for my work.

Prof. Andy Schürr has been a friend and colleague for a long time. My work on practical applications of graph rewriting is hardly conceivable without his contributions. In 1995, I spent a sabbatical at NTNU in Trondheim, Norway. This was the beginning of a fairly successful cooperation with Prof. Reidar Conradi
who provided me with many new insights into software configuration management. Several colleagues, students, and programmers have contributed to the work described in this book. In particular, I would like to thank Marita Breuer, Peter Heimann, Gregor Joeris, Dr. Carl-Arndt Krapp, Sven Krüppel, and Ansgar Schleicher. I would also like to thank all members of our group who have not been directly involved in my work. Each of them has assisted me in some respect, and they also created a good working atmosphere.

Finally, I would like to thank my wife Monika for her constant support and understanding. Moreover, I am indebted to my parents and my sister Anni. In particular, this book is dedicated to my father who has always supported and encouraged me.

Table of Contents

Part I. Introduction

1. Introduction 3
1.1 Development Processes 3
1.2 Management 5
1.2.1 Definition 5
1.2.2 Managerial and Technical Level 6
1.2.3 Products, Activities, and Resources 8
1.3 Tools for Managing Development Processes 10
1.3.1 Management System: Structure and Functionality 10
1.3.2 Scope of the Management System 12
1.4 Models for Managing Development Processes 12
1.4.1 Process Models 13
1.4.2 Models as Tool Specifications 13
1.5 Dynamics of Development Processes 14
1.5.1 Comparison to Other Business Domains 14
1.5.2 Dynamics at the Instance Level 15
1.5.3 Dynamics at the Definition Level 18
1.6 Approach and Contributions 19
1.6.1 Overall Approach 19
1.6.2 Context of Research 21
1.6.3 Models 23
1.6.4 Formal Specification 29
1.6.5 Tools 36
1.7 Related Work 41
1.7.1 Models 41
1.7.2 Formal Specification 43
1.7.3 Tools 45
1.8 Overview 48
Part II. Management of Development Processes: State of the Art
2. Process Management 53
2.1 Product Management 53
2.1.1 Documents and Configurations 54
2.1.2 Version Control 55
2.1.3 Workspace Management 57
2.2 Activity Management 57
2.2.1 Overview 57
2.2.2 Modeling of Activities 58
2.2.3 Functions of Activity Management 60
2.2.4 Tools for Activity Management 61
2.3 Resource Management 61
2.3.1 Human Resources 62
2.3.2 Computer Resources 63
2.4 Conclusion 64
3. Product Management 67
3.1 Functions of Product Management 67
3.2 Models for Product Management 69
3.2.1 Product Space 69
3.2.2 Version Space 71
3.2.3 Interplay of Product Space and Version Space 76
3.2.4 Construction of Versions 79
3.2.5 Workspaces 83
3.3 Tools for Product Management 85
3.3.1 Overview 85
3.3.2 System Descriptions 85
3.4 Conclusion 94
4. Activity Management 99
4.1 Universe of Discourse 100
4.1.1 Functions and Objectives of Process Management 100
4.1.2 Characterization of Development Processes 101
4.2 Models for Activity Management 104
4.2.1 Conceptual Framework 104
4.2.2 Process Meta Models 109
4.2.3 Product Development 112
4.3 Tools for Activity Management 117
4.3.1 Overview 117
4.3.2 System Descriptions 119
4.4 Conclusion 131
5. Resource Management 135
5.1 Management of Human Resources 135
5.1.1 Models for Human Resource Management 136
5.1.2 Tools for Human Resource Management 138
5.2 Management of Computer Resources 141
5.3 Conclusion 143
6. Tool Integration 145
6.1 Tool Integration: Classification and Overview 146
6.2 Tool Integration Technologies 149
6.3 Conclusion 153
Part III. A Management System for Mechanical Engineering
7. The SUKITS Project 157
7.1 Overview of the SUKITS Project 158
7.1.1 Motivation 158
7.1.2 Goals 160
7.1.3 Application Domain 162
7.1.4 Project Structure and Results 164
7.2 The SUKITS Approach to Process Management 165
7.2.1 Contributions 165
7.2.2 Management Models 166
7.2.3 Management Tools 167
7.3 Conclusion 168
8. Management Model: Informal Description 169
8.1 Product Management Model 169
8.1.1 Documents, Dependencies, and Configurations 170
8.1.2 Versions and Versioned Objects 170
8.1.3 Version and Configuration Graphs 172
8.1.4 Consistency Control and Data Integration 174
8.2 Activity Management Model 175
8.2.1 Product-Centered Activity Management 177
8.2.2 Process Dynamics 178
8.3 Resource Management Model 183
8.4 Integration of Formal and Informal Cooperation 185
8.5 Related Work 186
8.5.1 Product Management 186
8.5.2 Activity Management 189
8.5.3 Resource Management 191
8.6 Conclusion 192
9. Management Model: Formal Specification 193
9.1 PROGRES at a First Glance 193
9.2 Product Management Model 195
9.2.1 Graph Schema 195
9.2.2 Graph Transformations 204
9.3 Activity Management Model 214
9.3.1 Graph Schema 214
9.3.2 Graph Transformations 218
9.4 Resource Management Model 225
9.4.1 Graph Schema 226
9.4.2 Graph Transformations 227
9.5 Model Adaptation 229
9.5.1 Adaptation in SUKITS 229
9.5.2 PROGRES Specification of Model Adaptation 230
9.6 Discussion 234
9.6.1 Specification-in-the-Small 236
9.6.2 Specification-in-the-Large 237
9.7 Related Work 238
9.8 Conclusion 241
10. Management System 243
10.1 Tools: Functionality and User Interface 243
10.1.1 Management Environment 243
10.1.2 Modeling Environment 247
10.1.3 Work Environment 249
10.2 Realization 252
10.2.1 Management Environment 252
10.2.2 Modeling Environment 254
10.2.3 Work Environment 255
10.2.4 Tool Integration 256
10.2.5 Communication and Distribution 258
10.3 Conclusion 260
11. Applications, Experiences, and Evaluation 261
11.1 SUKITS Prototypes 261
11.2 Demonstration: Development of a Drill 264
11.2.1 Overview 264
11.2.2 Demo Steps 268
11.3 Evaluation 278
11.3.1 ManagementModel 278
11.3.2 Formal Specification 279
11.3.3 Management System 280
11.3.4 Applications 281
11.4 Conclusion 283

Part IV. Toward an Adaptable Environment for Modeling and Managing Development Processes

12. Overview28712.1 Conceptual Framework 288
12.1.1 Dimensions of Management 288
12.1.2 Model Architecture 290
12.1.3 Limitations of the SUKITS Approach 291
12.2 Modeling of Management Configurations 292
12.2.1 Architectural Issues 292
12.2.2 Models for Managing Products, Activities, and Resources 295
12.3 Management System 298
12.3.1 Overview 298
12.3.2 Modeling Environment 299
12.3.3 PROGRES Environment 301
12.3.4 Process Support Environment 302
12.4 Conclusion 302
13. Dynamic Task Nets 305
13.1 Informal Description 305
13.1.1 Structure of Task Nets 305
13.1.2 Levels of Modeling 308
13.1.3 Behavior of Task Nets 309
13.1.4 Examples 312
13.2 Formal Specification 315
13.2.1 Base Model 316
13.2.2 Standard Behavior 324
13.2.3 Structural Adaptation 326
13.2.4 Behavioral Adaptation 327
13.2.5 Discussion 328
13.3 Related Work 329
13.3.1 Net-based approaches 329
13.3.2 Rule-based approaches 330
13.3.3 State-based approaches 331
13.3.4 Procedural approaches 332
13.4 Conclusion 332
14. Unified Multi-Project Resource Management 333
14.1 Informal Description 333
14.1.1 Features of RESMOD 333
14.1.2 Resources 334
14.1.3 Resource Configurations 335
14.1.4 Plan and Actual Resources 335
14.1.5 Base and Project Resources 338
14.1.6 Task Assignments 340
14.2 Formal Specification 341
14.2.1 Layer 1: Resource Hierarchies 341
14.2.2 Layer 2: Actual and Required Resources 344
14.2.3 Layer 3: Base and Project Resources 350
14.2.4 Discussion 350
14.3 Related Work 353
14.4 Conclusion 354
15. Object-Oriented Process Modeling 355
15.1 Motivation 355
15.2 Meta Process 356
15.3 Process Analysis 358
15.4 Process Specification 360
15.4.1 Structural Modeling 361
15.4.2 Model Structuring 363
15.4.3 Behavioral Modeling 365
15.5 Environment Generation 368
15.6 Lessons Learned 371
15.7 Related Work 373
15.8 Conclusion 374
16. Current Status and Future Work 375
16.1 Management Model 375
16.2 Modeling Languages 376
16.3 Management System 377
16.4 Applications 377
16.5 Conclusion 378
A. Glossary 379
References 385
Index 413

[^0]: This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.
 © Springer-Verlag Berlin Heidelberg 1999
 Printed in Germany
 Typesetting: Camera-ready by author
 SPIN: $10703812 \quad 06 / 3142-543210$

