Skip to main content

Grouping Based on Coupled Diffusion Maps

  • Chapter
  • First Online:
Shape, Contour and Grouping in Computer Vision

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1681))

Abstract

Systems of coupled, non-linear diffusion equations are pro- posed as a computational tool for grouping. Grouping tasks are divided into two classes - local and bilocal - and for each a prototypical set of equations is presented. It is shown how different cues can be used for grouping given these two blueprints plus cue-specific specialisations. Results are shown for intensity, texture orientation, stereo disparity, opti- cal flow, mirror symmetry, and regular textures. The proposed equations are particularly well suited for parallel implementations. They also show some interesting analogies with basic architectural characteristics of the cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Ambrosio, V. Tortorelli, Approximation of functionals depending on jumpls by elliptic fnctionals via T-convergence. Comm.. Pure and Appl. Math., vol.43, pp. 999–1036, 1990

    Article  MathSciNet  Google Scholar 

  2. A. Blake and A. Zisserman, Visual Reconstruction, MIT Press, 1987

    Google Scholar 

  3. G. Chaitin, Randomness and mathematical proof, Scientific American, Vol. 232, No. 5, pp. 47–52, 1975

    Article  Google Scholar 

  4. S. Grossberg and D. Todorovic, Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena, Perception & Psychophysics, 43, 241–277, 1988

    Article  Google Scholar 

  5. Horn B.K.P. and Schunck G.: Determining optical flow. AI. 17, 185–203, 1981.

    Google Scholar 

  6. B. Jenkins, Redundancy in the perception of bilateral symmetry in dot patterns, Perception & Psychophysics, Vol. 32, No. 2, pp. 171–177, 1982

    Article  Google Scholar 

  7. E. Jones, Determinants of the cytoarchitecture of the cerebral cortex, ch. 1 in Signal and sense, local and global order in perceptual maps, eds. Edelman, Gall, and Cowan, pp. 3–50, Wiley-Liss, 1990

    Google Scholar 

  8. T. Kanade, Recovery of the 3-dimensional shape of an object from a single view, Arti_cial Intelligence, Vol.17, pp.75–116, 1981

    Article  Google Scholar 

  9. D. Lowe, Perceptual Organization and Visual Recognition Stanford University technical report STAN-CS-84-1020, 1984

    Google Scholar 

  10. D. Marr and T. Poggio, A therory of human stereopsis, Proc. Royal Soc. B, 204, pp.301–328, 1979.

    Google Scholar 

  11. D. Mumford and J. Shah, Ootimal approximation by piecewise smooth functions and associated variational problems, Comm. on Pure and Applied Math., Vol.42, pp. 577–685, 1989

    Article  MathSciNet  Google Scholar 

  12. T. Papathomas, I. Kovacs, A. Gorea, and B. Julesz, A unified approach to the perception of motion, stereo, and static-flow patterns, Behavior Research Methods, Instruments, & Computers, Vol. 27, No. 4, pp. 419–432, 1995

    Article  Google Scholar 

  13. P. Perona and J. Malik, Scale-Space and Edge Detection Using Anisotropic Diffusion, PAMI Vol.12, No.7, July 1990.

    Google Scholar 

  14. W. Phillips and W. Singer, In search of common foundations for cortical computation, Behavioral and Brain Sciences, Vol. 20, pp. 657–722, 1997

    Article  Google Scholar 

  15. M. Proesmans, L. Van Gool, and A. Oosterlinck, Determination of optical flow and its discontinuities using non-linear diffusion, ECCV, 295–304, may 1994

    Google Scholar 

  16. M. Proesmans, E. Pauwels, and L. Van Gool, Coupled geometry-driven diffusion equations for low-level vision, in Geometry-Driven Diffusion in Computer Vision, Kluwer Academic Publishers, pp.191–228, 1994.

    Google Scholar 

  17. M. Proesmans, L. Van Gool, and A. Oosterlinck, Grouping through local, parallel interactions, SPIE Int. Symp. on Optical Science, Appl. of Digital Image Processing XVIII, Vol.2564, pp.458–469, 1995

    Article  Google Scholar 

  18. J. Shah, Segmentation by non-linear diffusion. CVPR, 1991.

    Google Scholar 

  19. A. Treisman and G. Gelade, A feature integration theory of attention, Cognitive Psychology, Vol. 12, pp. 97–136, 1980

    Article  Google Scholar 

  20. A. Treisman, Preattentive processing in vision, CVIP, 31, 156–177, 1985

    Google Scholar 

  21. A. Treisman, P. Cavanagh, B. Fischer, V. Ramachandran, and R. von der Heydt, Form perception and attention, striate cortex and beyond, in Visual Perception: The Neurophysiological Foundations, Academic Press, 1990

    Google Scholar 

  22. R. von der Heydt, E. Peterhans, and G. Baumgartner, Illusory contours and cortical neuron responses, Science, Vol.224, pp.1260–1262, 1984

    Article  Google Scholar 

  23. M. Wertheimer, Laws of organization in perceptual forms, in A source-book of Gestalt Psychology, ed. D. Ellis, Harcourt, Brace and Co., pp.71–88, 1938

    Google Scholar 

  24. S. Zeki, Functional specialisation in the visual cortex: the generation of separate constructs and their multistage integration, ch. 4 in Signal and sense, local and global order in perceptual maps, eds. Edelman, Gall, and Cowan, pp. 85–130,Wiley-Liss, 1990

    Google Scholar 

  25. S. Zeki, A Vision of the Brain, Blackwell Scientific Publications, 1994.

    Google Scholar 

  26. S. Zucker, Early processes for orientation selection and grouping, in From Pixels to Predicates, ed. A. Pentland, pp.170–200, Ablex, New Jersey, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Proesmans, M., Van Gool, L. (1999). Grouping Based on Coupled Diffusion Maps. In: Shape, Contour and Grouping in Computer Vision. Lecture Notes in Computer Science, vol 1681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46805-6_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-46805-6_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66722-3

  • Online ISBN: 978-3-540-46805-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics