Skip to main content

Quasi-Invariant Parameterisations and Their Applications in Computer Vision

  • Chapter
  • First Online:
Shape, Contour and Grouping in Computer Vision

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1681))

  • 1067 Accesses

Abstract

In this paper, we show that there exist quasi-invariant pa- rameterisations which are not exactly invariant but approximately invari- ant under group transformations and do not require high order deriva- tives. The affine quasi-invariant parameterisation is investigated in more detail and exploited for defining general affine semi-local invariants from second order derivatives only. The new invariants are implemented and used for matching curve segments under general affine motions and ex- tracting symmetry axes of objects with 3D bilateral symmetry.

The authors acknowledge the support of the EPSRC, grant GR/K84202

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.B. Barrett and P.M. Payton. General methods for determining projective in-variants in imagery. Computer Vision, Graphics and Image Processing, Vol. 53, No. 1, pp. 46–65, 1991.

    MATH  Google Scholar 

  2. T.O. Binford and T.S. Levitt. Quasi-invariant: Theory and exploitation. In Proc. DARPA Image Understanding Workshop, pp. 819–829, 1993.

    Google Scholar 

  3. A. Blake. A symmetry theory of planar grasp. International Journal of Robotics Research, Vol. 14, No. 5, pp. 425–444, 1995.

    Article  Google Scholar 

  4. A.M. Bruckstein, R.J. Holt, A.N. Netravali, and T.J. Richardson. Invariant signatures for planar shape recognition under partial occlusion. Computer Vision, Graphics and Image Processing, Vol. 58, No. 1, pp. 49–65, 1993.

    Article  Google Scholar 

  5. T.J. Cham and R. Cipolla. Automated B-spline curve representation with MDL-based active contours. In Proc. 7th British Machine Vision Conference, Vol. 2, pp. 363–372, Edinburgh, September 1996.

    Google Scholar 

  6. R. Cipolla and A. Blake. Surface orientation and time to contact from image divergence and deformation. In G. Sandini, editor, Proc. 2nd European Conference on Computer Vision, pp. 187–202, Santa Margherita, Italy, 1992. Springer-Verlag.

    Google Scholar 

  7. D. Cyganski, J.A. Orr, T.A. Cott, and R.J. Dodson. An a_ne transformation invariant curvature function. In Proc. 1st International Conference on Computer Vision, pp. 496–500, London, 1987.

    Google Scholar 

  8. D. Forsyth, J.L. Mundy, A. Zisserman, and C.A. Rothwell. Recognising rota-tionally symmetric surfaces from their outlines. In G. Sandini, editor, Proc. 2nd European Conference on Computer Vision, Santa Margherita, Italy, 1992. Springer-Verlag.

    Google Scholar 

  9. S.A. Friedberg. Finding axes of skewed symmetry. Computer Vision, Graphics and Image Processing, Vol. 34, pp. 138–155, 1986.

    Article  Google Scholar 

  10. A.D. Gross and T.E. Boult. Analyzing skewed symmetries. International Journal of Computer Vision, Vol. 13, No. 1, pp. 91–111, 1994.

    Article  Google Scholar 

  11. M. Hu. Visual pattern recognition by moment invariants. IRE Transaction on Information Theory, Vol. IT-8, pp. 179–187, February 1962.

    MATH  Google Scholar 

  12. T. Kanade and J.R. Kender. Mapping image properties into shape constraints: Skewed symmetry, a_ne-transformable patterns, and the shape-from-texture paradigm. In J. Beck et al, editor, Human and Machine Vision, pp. 237–257. Academic Press, NY, 1983.

    Chapter  Google Scholar 

  13. J.J. Koenderink and A.J. van Doorn. Geometry of binocular vision and a model for stereopsis. Biological Cybernetics, Vol. 21, pp. 29–35, 1976.

    Article  Google Scholar 

  14. S. Lie. Gesammelte Abhandlungen, Vol. 6. Teubner, Leipzig, 1927.

    MATH  Google Scholar 

  15. R. Mohan and R. Nevatia. Perceptual organization for scene segmentation and description. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 14, No. 6, pp. 616–635, 1992.

    Article  Google Scholar 

  16. T. Moons, E.J. Pauwels, L.J. Van Gool, and A. Oosterlinck. Foundations of semi-di_erential invariants. International Journal of Computer Vision, Vol. 14, pp. 25–47, 1995.

    Article  Google Scholar 

  17. J.L. Mundy and A. Zisserman. Geometric Invariance in Computer Vision. MIT Press, Cambridge, USA, 1992.

    Google Scholar 

  18. P.J. Olver. Applications of Lie Groups to Di_erential Equations. Springer-Verlag, 1986.

    Google Scholar 

  19. P.J. Olver, G. Sapiro, and A. Tannenbaum. Di_erential invariant signatures and flows in computer vision. In B.M. ter Haar Romeny, editor, Geometry-Driven Di_usion in Computer Vision, pp. 255–306. Kluwer Academic Publishers, 1994.

    Google Scholar 

  20. E.J. Pauwels, T. Moons, L.J. Van Gool, P. Kempenaers, and A. Oosterlinck. Recognition of planar shapes under a_ne distortion. International Journal of Computer Vision, Vol. 14, pp. 49–65, 1995.

    Article  Google Scholar 

  21. D. Reisfeld, H. Wolfson, and Y. Yeshurun. Contex-free attention operators: The generalized symmetry transform. International Journal of Computer Vision, Vol. 14, No. 2, pp. 119–130, 1995.

    Article  Google Scholar 

  22. C.A. Rothwell, A. Zisserman, D.A. Forsyth, and J.L. Mundy. Planar object recog-nition using projective shape representation. International Journal of Computer Vision, Vol. 16, pp. 57–99, 1995.

    Article  Google Scholar 

  23. J. Sato and R. Cipolla. A_ne integral invariants for extracting symmetry axes. In Proc. 7th British Machine Vision Conference, Vol. 1, pp. 63–72, Edinburgh, September 1996.

    Google Scholar 

  24. J. Sato and R. Cipolla. Quasi-invariant parameterisations and matching of curves in images. International Journal of Computer Vision, Vol. 28, No. 2, pp. 117–136, 1998.

    Article  Google Scholar 

  25. D.H. Sattinger and O.L. Weaver. Lie groups and algebras with applications to physics, geometry and mechanics. Springer-Verlag, New York, 1986.

    Google Scholar 

  26. G. Taubin and D.B. Cooper. Object recognition based on moment (or algebraic) invariants. In J.L. Mundy and A. Zisserman, editors, Geometric Invariance in Computer Vision, pp. 375–397. MIT Press, 1992.

    Google Scholar 

  27. L.J. Van Gool, T. Moons, E. Pauwels, and A. Oosterlinck. Semi-differential invariants. In J.L. Mundy and A. Zisserman, editors, Geometric Invariance in Computer Vision, pp. 157–192. MIT Press, 1992.

    Google Scholar 

  28. L.J. Van Gool, T. Moons, D. Ungureanu, and A. Oosterlinck. The characterization and detection of skewed symmetry. Computer Vision and Image Understanding, Vol. 61, No. 1, pp. 138–150, 1995.

    Article  Google Scholar 

  29. L.J. Van Gool, T. Moons, D. Ungureanu, and E. Pauwels. Symmetry from shape and shape from symmetry. International Journal of Robotics Research, Vol. 14, No. 5, pp. 407–424, 1995.

    Article  Google Scholar 

  30. I. Weiss. Projective invariants of shapes. In Proc. Image Understanding workshop, Vol. 2, pp. 1125–1134, 1988.

    Google Scholar 

  31. M. Zerroug and R. Nevatia. Three-dimensional descriptions based on the analysis of the invariant and quasi-invariant properties of come curved-axis generalized cylinders. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 18, No. 3, pp. 237–253, 1996.

    Article  Google Scholar 

  32. A. Zisserman, D.A. Forsyth, J.L. Mundy, and C.A. Rothwell. Recognizing general curved objects efficiently. In J.L. Mundy and A. Zisserman, editors, Geometric Invariance in Computer Vision, pp. 228–251. MIT Press, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sato, J., Cipolla, R. (1999). Quasi-Invariant Parameterisations and Their Applications in Computer Vision. In: Shape, Contour and Grouping in Computer Vision. Lecture Notes in Computer Science, vol 1681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46805-6_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-46805-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66722-3

  • Online ISBN: 978-3-540-46805-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics