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Abstract. This paper proposes two novel implementation methods for
the RSA cryptographic scheme. (1) The most efficient RSA implemen-
tation known to the present authors. This implementation achieves 50
Kbps at about 25 Kgates for a 512-bit exponent e and a 512-bit modulus
N. Thus the efficiency is 2.0 bps/gate. (2) A systolic architecture useful
for high-speed and efficient and flexible chip implementation of the RSA
scheme.

1 Introduction

Modular exponentiations (or powerings) are elementary operations for cryp-
tographic transformations in public-key cryptosystems like the RSA scheme
[RSA78]: C — M' mod N, the ElGamal schemes, and so on. These cryptosys-
tems' security is based on the difficulty of factoring integers or that of comput-
ing discrete logarithms. To achieve enough security level, the word lengths in
the modular exponentiations should be significantly greater than those used in
conventional general-purpose computer hardwares. The required typical word
length is around 512 bits or more. A modular exponentiation can be accom-
plished by iterating modular multiplications. Thus, for obtaining high-speed
implementations of the USA scheme and the like, it is quite natural to pursue
techniques for speeding up modular multiplications for integers of 512 bits or
longer.

A lot of efforts have been done in this field [Bric82]-[\VQ90]. Reference
[Bric89] surveys various hardware implementations of the RSA scheme. We
add Table 1 for introducing other implementations, not mentioned in [Bric89],

Table.1: Some of the implementations for the RSA scheme so far presented

Reference
[Miya83]
[KMT87]
[Mori90]

Baudrate
50K
70K
80 K

bits
512
512
512

Gates
280K
160K
50 K

Reference
[TAA87]
[Til A ASS]
[IWDS91]

Baudrate
100K
500 K

64 K

bits

256
512
512

Gates

44SK
640K

50 K
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Fig.1: Eficiency and Flexibility 

w i th  known circui t .  scale (Gates) and known processing speed (Baudrate). It 
should be noted that in Table 1 [AIoriSOj s1i01v-s an itiiplernentation only for 
modular miiltiplication a n d  [TAA%] presents an RSX implementation for a 2%- 
bi t  esponent and a 256-bit modulus. I f  we define tlie efficiency of implement.ation 

(eficiency of implementation) = (proressing speed)/(circuit scale) 

then many of hardware implementations so far reported are not so eficient. 
This measure may be appropriate from tlie prncrical view point of achieving 
high-speed and smaller circuits. The better efficiency is realized by the iniple- 
mentat.ion with the smaller circuit scale and the higher processing speed. 

JVe define another measure cal led t h e  flesibility, wi i i c l i  represents the degree 
of linearity bet.\reen the processing speed and the circuit scale. To illustrate this 
notion, we esamine two v i r tua l  implementations named Xletlrod A a n d  hletliod 
B, each of which  relationship hetween the circui t .  scale and the processing speed 
is given in Fig.1. )Ye consider t h a t  hlethod A is not flesible because it is not, 
effcient in  the wide rangc of processing speed. I n  con t r a s t ,  Alctliod B is flexible 
since it  realizes implementations w i t h  the same efiiciency in the wide range of 
processing speed. I n  t h i s  paper  rye propose t n o  implementation methods for 
modular multiplication from these points of view. 

Section 2 shows a modular multiplication algorithm and circuit rv i t l i  the best 
efficiency rating of all algorithms and circuits introduced to date and knoivn to 
the present authors. Based on this Srctioii 2 tlcscribed a n  RSA implementation 
acliieb,ing 50 K h p s  a t  a b o u t  25 Kgatcts for a 512-bit esponent e and a 512-bit 
modulus A .  Thus the efficiency is 2.0 bps/gnte .  

Section 3 presents a flesihle modular multiplication algorit.lim based o n  S ~ S -  

tolic array, a way of parallel processing. Tliis high speed processing method 
utilizes a pipeline processing by means o f  several t y p ~ 5  of processing elements 
(henceforth abbreviated as PEs) each of \\.IIicli is controlled locally and r e g -  
larly. Also the algoritlim is su i tahk  for c h i p  iinpI~.ni~,ritatioiis because a ch ip  
c a n  he conqtrl ictetl  simply arid regi i lnr ly  w i t 1 1  favorrtc circuit scale arid hccauS(! 

as 
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the RSA processing speed increases in proportion to  the number of chips. This 
implementation can allow an increase in speed based on the Chinese remainder 
theorem in the same chip implementation because it permits variable bit number 
for the encryption keys. 

Lastly in Section 4, the results of this paper are compared with previously 
obtained results and are shown to be better from the practical view point. See 
Fig.12. Parallel processing applied to the RSA scheme gives an architecture that 
allows for the increasing of speed for processing and the reduction in size of the 
circuit scale systematically. 

2 An Efficient Implementation for RSA Scheme 

2.1 An Efficient Modular Multiplication Circuit 

Consider the modular multiplication R = A . B mod N (with N, A, B ,  R 
being k = tn n bit integers). We express A in binary and B and R in radix 
x = 2" as follows, 

A 
B = Bn-l..Xn-' + Bn-2 . X"-2 + . - . + B 1 . X ' + &  (2) 
R (3) 

= A k - 1  -P-' + A b - 2  -2"-' + - . *  + A1 . 2  + A0 (1) 

= &,-I exn-' + h - 2  .x'"-2 + * * . +  R1 -S + & 

where Ak-j E {0,1} (j = l , . - . l k )  and Bi, & E { O , l } m  (i = O,..-,n - 1). 
Then the modular multiplication can be calculaied by the consecutive esecution 
of the following two algorithms: 

ALGORITHM 1A 
(Input: A o , . . * , A k - 1 ;  Bol. ' .IBn-l;  N) 
(Output: & , o , . * *  , & , n - l )  

where dw, (Z )  = 2 mod 2" and U p a ( 2 )  = (2 - dm, (Z) ) /2" .  



I Residue Table 

Fig.?: A n  efficient modular multiplication circuit 

Fig.:! illustrates the principal part of our modular multiplication circuit, 
namely the circuit implementing XLGORITII31 1X. The index i goes from left 
( i  = 0) to right ( i  = n - 1) and corresponds to the position of the register, multi- 
plier, adder and the modular-reduction circuit, whereas the value j corresponds 
to the clock. Each circuit except registers is realized as below. 

1) Multiplication: the multiplier is easily realized by A X D  gates mhicli output 
B, only when . 4 k - ,  is 1. Therefore the circuit scale of the multipliers is small. 

2 )  Addition: the adder is realized by 4-input addition functions of which inputs 
are Ak-j ' B ,  from the multiplier and E,-l,, from the modular-reduction r i rc i r i t  
and Dj- l , ,  ' 2  and C,-l,,-l. Since . A t - ,  . 8, and E,-l,i are rn-hit and Dj-1,i 

is (m - 1)-bit, the fact tliat Cj-1,i-I is less than an m-bit value leads that the 
value enters the register frorn the adder is (rn + ?)-bit and thus, Cj,, is 3-bit. 
Therefore in the case where m 2 3 the circuit scale for the carry-bit registers is 
small compared to the whole circuit  scale for regist.ers, because there are 2 ca r ry  
bits for every m-bit added result. 

3 )  Modular Reduction: it is easy to see t l ~ a t  C?,i ,  the 3 h i t  carry, doesn't take the 
value [111] (See Appendix). The  residue E,-1,; ( i  = 0,. . . , n  - 1) is derived as 
Expression ( 4 )  from Cj-1,n-l. Since C j - ~ , ~ - l  takes 3-bit values ( O O O ] ,  [ O O l ] ,  I . . ,  

[llO], except for [ l l l ] ,  each Ej-l,i takes only 7 patterns including Ej-l,o = 0. 
These residue pat,terns can  be selected by the selectors S i l l  Fig.2. Therefore 
the delay time of modular reduction is short. \\'it11 this circuit, the modular 
reduction processing is simplified because of the no need to compare divisors 
with dividends and operate negative numl)ers. Also, since Ej-l,n-, is a true 
value, these values can be input into the addition circuit a-5 tlicy are. 

The  outputs R,,,,' . , Rk,n . - l  E { O ,  l)"'+' from the circuit should be modified 
by an auxiliary small circiiit. for  ALGORITITI\I I n ,  whlcll compensates the c a r r j  
bits in Rk,, SO tliat they become all zero after the final calculation and corrects 
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the final value of R to be less than N .  Such a small circuit will have little effect 
on the overall processing speed. This is the reason why it is omitted from Fig.2. 

2.2 Circuit Scale and Processing Speed 

Assuming that the proposed circuit is fabricated by C-hlOS technology, let 
us evaluate the circuit scale according to those of the Fujitsu Standard Cells 
[FujGM], [Fujh.I88]. 

When Ic equals 512 and m equals 4, the modular multiplication circuit of 
roughly 25 Kgates is possible. (The residues Eo,  E l , .  . . , E,-1 are calculated 
and set by another circuit from the value of N in relation of Expression (4).) 
Since the processing time required for 1 clock is realized at the order of 20 - 30 
ns using C-510s gates, the circuit i n  Fig.:! needs approximately 1 3 p  to execute 
one modular multiplication R = A . B mod N. Subsequently, when the keys e 
and iV are each at  the .512 hit ,  RSA encryption using this modular multiplication 
circuit c a n  be achieved a t  a processing speed of 50 Kbps. Also, if tlie 6 non-zero 
values for E,,, derived from IV are used as the public-key instead of tlie modulus 
N, then the preprocessing required for E,,, can be eliminated. 

Table 1 and the reference [Bric89] sliow various implementations for the RSX 
scheme u p  to date. Even though an unconditional comparison cannot be made, 
when efficiency is defined as t,lie processing speed per one gate (processing s p e e d  
/circuit scale) ,  we attempt an evaluation of several examples of tlie RSX scheme. 
Among the R S A  scheme implementations developed u n t i l  now,  that, of [THAX88] 
achieves the highest processing speed of 500 Kbps,  however it needs a scale 
greater than or equal to 640 Kgates. I t  yields an efficiency of 0.78 bps/gate. 
A modular multiplication circuit for the RSX scheme [hIori90] can achieve a 
processing speed of 80 Kbps using a 50 Kgates circuit scale. The  modular 
multiplication circuit yields an efficiency of l.G bps/gat.e, and can be considered 
to be the most efficient before this paper. 

While, t h e  circuit p ropnsd  i n  2.1 yields a n  efficiency of 2 0 bps/gate, and 
can thus be described bs more efficient than that of [hIoriOO]. Further, since the 
modular multiplication circuit in [hloriOO] requires the circuit for Booth algo- 
rithm, bot.11 the control and calculation algoritlim of tlie circuit proposed lierein 
can be considered simpler than that of [RtoriDO]. Consequently, the modular 
multiplication circuit in Fig.2 allows the most efficient implementation of the  
F S A  scheme to date. 

3 Systolic Arrays for RSA Scheme 

3.1 An Approach to Design Systolic Arrays for Modular Multiplica- 
tion 

Modular multiplication. R = A .  B mod h' can  be calculatetl  b y  the recursive 
execution of 
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Fig.3. Datd dependence graph for modular miiltiplication 

from j = 1 to j = k ,  where & is 0 ,  a n d  where E,-l is t h e  residue shown in 
Expression (4) .  

A d a t a  dependence graph can represent a version of the  recursion obtained by 
using m-bitwise slice. We propose tlie graph given in Fig.3 where each column 
of n cells performs Expression (6)  and  t h e  row of k such columns illustrate 
the recursive execution. In the rest of this subsection, we give an intuitive 
explanation of t h e  key idea for our systolic arrays. 

T h e  inputs  B flow from left to right along the  horizontal arrows, and t h e  
inputs  A flow downward along the  vertical arrows. T h e  result of the  computat ion 
done in each cell is divided into the  least significant m - 1 bits D and the  rest 
of bits C ( t h e  carry bits). T h e  1-bit shifted D (double of D )  is input  to the  cell 
in the  s a m e  row and in the  right n e s t  column.  The 1-bit shift.ed C (double of 
C) is input  t o  t,lie cell in tlie upper n e s t  row and in the column two positions 
to t h e  right. For each cell in the  toy row tlie carry bits C is branslated into a 
residue E a n d  E affects t h e  right next column of cells. Such a trick is to avoid 
tlie increasing of the  size of data t reated in each cell and to ensure a regular and  
efficient pipeline s t ructure .  

Observe t h a t  between each pair  of consecutive columns there a re  three types 
D ,  C1, a n d  C2 of d a t a  flows as well as the  flow of B. For each column,  C1 
denotes the type of C made in the  column and C2 denotes the  type of C passing 
through the  column. Each column can b e  realized a single processing element 
(PE) defined as Fig.5 and the  row of k such coliimns can be implemented a the  
connection of k PEs. See Fjg.4. ‘I’lie j tli PE holds tlic value of .4-, a t  one of 
its internal registers. T h e  carry bits C produced a t  the top cell i n  a column in 
Fig, 3 is hold a t  a register a-s .Sorll i n  tlie cor respont i i i rg  PE i i i  Fig 5.  Ttle ROZI  
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BoB b ' .iB 0 n-  1 lT[yE 11: jTb c1 D 

c2 ... 0 
0 
0 ... 

... TaT 1 --;T n-1 

Fig.4: Systolic array for modular multiplication 

C l i n  
D i n  

C2 in 
S i n  

. ,Tn 

n-  1 

-1 

Fig.5: Processing element in  Fig.4 

in each PE accepts t h e  Sout coming from t h e  left n e s t  PE as 
S,, and o u t p u t s  a residue E specified by S,, i n  n - b i t  wise according to a n  

input  sequence of timing signals T n - 1 ,  Tn-?, . - ,To. 
Since the form of the d a t a  D ,  C1, and C2 appears  in  t h e  array differs from 

that of the  input  d a t a ,  the modular p r o d u c t  of txvo integers, o u t p u t  from the 
array cannot be  directly used as another input  t o  t h e  same array. T h u s ,  u s ing  
only t h e  array we cannot  execute modular exponentiation. Fire describe in t h e  
n e s t  subsection a method t o  eliminate such a drawback and  propose an effective 
systolic array. 

3.2 A Systolic Array for Modular Multiplication arid Compensating 
Carry Bits 

We consider t h e  modular multiplication f& = A , .  B, mod N ,  where A ,  = 
A ,  B and R are shown in A + a X, B, = B + b . arid R, = R + r 

Expressions (1) - (3) ,  respectively and Q .  6 a n d  r arc  esprcsscd as follows, 
S 
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a 
b 
7- 

= al;-m Xn-' + . . .  + a?.,,, . X + a, 
= b, - 1 , A'"-? + . . . + b? . ,Y + b1 
= r,,-l. Xn-' + . . . + r? . ,Y + r1 

w h e r e , a k - j ,  6,,-i, r,~~E{O,1)(j=m,2~m,~~~,(n-l)~m)(i=1,~~~,n-l), 
a n d  a k - j ,  b, , - i ,  rn-i  are  1-bit carry bits by every m-bi t  group. T h e  modular  
multiplication R, = A ,  . B, m o d  N is calculated as shown in ALGORITIIR.1 2. 

Fig.9 is the systolic array for ALGORITHM 2 and PEA, P E B ,  and  PEC's 
processing is executed by t h e  PE shown in Fig.6, Fig.7, a n d  Fig.8, respectively. 
T h e  neighboring PEs Is connected between Xoul and Xi, (,U = b,  B ,  S,  D, C and 
T )  In  ALGORITHM 2 ,  t h e  value i refers t,o t h e  clock, a n d  j refers to t h e  number  
for t h e  PEs, so t h a t  from right t o  left j = 1 t o  j = k + n refers t,o each posit,ion 
of t h e  P E s .  P E A  calls 1 PEB for every m tu rns ,  and  for tlie final calculation 
calls PEC instead of PEE in Fig.9. 

In the first P E ( j  = 1) of Fig.9, €In-, and bn-;(i = 1 ; .  ',n) are input  from 
B;, and  bin simultaneously in order from the  upper  row. Also, the timing signal 
Tn-, = n - i ( i  = 1 , .  - .  , n) referring to the modular-reduction circuit is input  
f rom Ti, synchronized with €In-,. &-,, b,-, and T,-i are  held back by  one 
clock in internal registers of t h e  PEs, then are  output  t o  the  n e s t  PE from Bout,  
bout a n d  Tout. In the first PE the values input  for D,,, Sin and Ci, are  set  t o  0. 
Each PE's composition elements and  actions can be  explained in the  following: 

PEA : T h e  value /I-,+, is preset in t h e  internal 1-hit register of j-th P E A .  T h e  
multiplier is constructed with m +  1 AND gates  and  outputs  .-lk-j+, .B,-; 
and Ak-j+,  . b,,-,. T h e  adder  is based on the  5-input from t h e  mult,iplier 
o u t p u t s  A L - ~ + ,  B,-i and .4k-,+, . b,-,, tlie modular-reduction circuit 's 
output E,-l,,-,-*, and tlie previous PE's o u t p u t  2 .  d r ~ ~ - l ( R ~ - l , ~ - , )  and 
t h e  o u t p u t  2.C,-2,n-1-1 of the  two P E s  before. Since A k - j + $  . Bfl-i a n d  
Ej-,,,,-; are  m-bit and c f ~ ~ - ~ ( R , - ~ , , ~ - ; )  is m - 1-bit and .4.t-j+, . b n - ,  
is 1-bit, the  fact. t h a t  2 .  CJ-?, , - , - :  IS less than a n  rn-bit value leads t h a t  
t h e  value enters the register from the adder is rn + 2-bit. T h e  residue 
E,-I,,,-, is derived from Espression (7)  in relation of U??m-I(Ej - l ,n -1)  = 
Cj-l,,-l. Since Bn-i and  EJ-l,n-l are  in the  s a m e  digit,  ( i  = 
1, - . , n) can  be giadually o u t p u t  according to the timing signal T ' - ,  which 
is synchronized w i t h  El,-,. Since Cl-l,n-l is 3-bit and  Tn-, is log n-bit, tlie 
o u t p u t  circuit for r a n  he  realized by R o l l  (read-only-memory) 
holding input  of 3 i logn bits and o u t p u t  or rn bits and  the select.or a n d  
t h e  register for the 3 bits t o  save t h e  value of C,-l,,-l. 

PEB : In t h e  internal register of this PE the  value a k - l t s + l  is preset. Since 
ak-j+,+, and A t - , + ,  in the previous PE correspond to the same bit in 
t h e  binary expression, dw, ( RJ-  and CJ-?,,-'- are  not doubled a n d  
Cj-1,n-i is U P m ( R I - l , n - i ) .  

PEC : T h i s  P E  aims at to make the o u t p u t  rn- ,  ( z  = 1,  . n )  one h i t .  
This PE adds  the  orltpiitk Dot . ( ,  S o u l ,  arid C,,, f r o m  tlie previous PE 
and creates the single value R L + n , n - , .  Nes t  the PE delays the value 
dwm(Rktn,,- ,)  in  the  regist.er and adds it to the value i ~ p ~ , , ( R k + ~ , ~ - ; ) ,  a n d  
produces R k + n + l , 7 1 - ,  E { O x  ( i  = 1 ,  . . .  ,n). The most significant, b i t s  
~ p , ~ ( R k + ~ , , - l )  I S  saved i n  a wpnratr .  r eg iS tp r  SinrP tlir residue El+.,;! 
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b in  
B in 

T in 

Fig.6: PEA Fig.7: PEB Fig.8: PEC 

Ak- 1 Ak-m a k - m  Ak-m-l  

PEA 

rout 

%" t 

PEA PEC 

Fig.9: Systolic-array for modular multiplication uP ing  PEA, PEB and PEC 

is calculated by (CC . X n )  mod IV, RLtn+?,,,-i = d u ! m ( R t + n + i , n - i )  -I- 
U P r n ( R i ; + n + l , n - i - l ) + E ~ + n + l , n - i  and Ri;+n+:,n-i € { O , l } m "  ( i  = 1,.  , '  ) n )  
However, pre-modular multiplication is performed in the check circuit 
shown as C in Fig.S to set  tlie most significant bit rn- l  = 0.  Since the  most 
significant bits of residue Ead from the value CC is calculated in advance, 
t h e  pre-modular multiplication dw,( X ~ + , , + l , ~ - l )  + 7 ~ p ~ ~ ~ (  R t + n + l , n - ? )  i- 
Ead can be  calculate. If t h e  most significant bit of t h e  pre-modular mu]- 
tiplicat.ion is 1, the  fact t h a t  takes ( (CC + 1) ' ,Yn) mod N leads 
r,-l = 0. This  checking circiiit is executed wi th  3 bits of ROM and a n  
adder .  

Consequently, the repeating modular miiIt.ipIication such as the RSA enci- 
phering and deciphering can be acliicved w i t 1 1  a syst,olic a r r ay  as  sl1owl1 in Fig.9. 
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P 
E 
A 

where duln(Z)  = Z mod 2" a n d  u p n ( Z )  = (2 - dr0 , (Z) ) /2"  

3.3 Circuit Scale and Processing Speetl 

iri Tahle.2 for 717 = Y 
At first we evaluate t h e  circuit scales of P E A ,  I'EB aritI PEC, arid sIio\v t , l i c m  
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Table.2: Circuit scale of PEs for m = 8

multiplication
iplication
modular reduction
delay
total

PEA
20

294
404

L. 9 4

812

PEB
20

294
306

94
714

PEC
0

464
404

38
906

Table.3: Efficiency of PEA for m

m
multiplication
addition
modular reduction
delay
PEA's circuit scale
number of PEs
total circuit scale
processing speed
efficiency

16
31

451
410
138

1030
544

56 IK
400K
0.71

32
DO

891
410
232

1603
528

847K
800K

0.94

64
103

1771
349
425

2648
520

1377K
1600K

1.16

12S
199

3531
318
819

4867
516

2512K
3200K

1.2T|

In order to construct a systolic array shown in Fig.9, 512 PEAs, 63 PEBs
and 1 PEC are necessary. For simplicity's sake, if the systolic array in Fig.9
consists of 576 PEAs, its circuit scale becomes 468 Kgates.

Since the processing time needed for 1 clock is the time to go from the selector
to pass the ROM and the adder, if a bi-polar ROM is used a processing time of
about 50 ns can be achieved. When the RSA scheme keys e and N are 512 bits,
a processing speed for the RSA scheme can achieve at about 200Kbps. This
means that even if data is entered at the speed of 200Kbps successively, real-
time processing by means of the pipeline processing of the systolic array without
buffer overflow is possible.

Tahle.3 shows PEA's circuit scale and processing speed for selected m's. Since
the delay time for the adder increases as the value of m increases even when m
is doubled it can be considered that the processing speed will not double, but,
rather, somewhat decrease. However, if the processing speed as m increases
is compared to the heap of the delay time, the influence of the delay time is
ignorably small. Consequently, we realize that as m increases the efficiency
increases.

Also, since the functions of PEA, PED and PEC resemble each other, a
common PE can be constructed only increasing a small circuit scale as compared
with that of PEA. The common PE calculates a partial modular multiplication

B d Nsuch as = 2 • / ? , Ak_} • Bc mod ;V and/or R, = /?;-_t + Bc mod N
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Fig.10 : Chip implementation using Systolic RSA Chip 

, and the pipeline structure by 7 PEs realizes partial modular multiplications 
q times. Consequently, processing speed of a modular nlultiplication can be 
increased in proportion to the increase of the number of t,he PEs. Further, the 
pipeline structure wi th  the PEs can keep the same efficiency for an  increase in 
speed. For example, if we take m = 8, a circuit scale of q t S 1 2  gates (with q being 
an integer representing the number of PEs, 131072 2 q 2 1) and a processing 
speed of q.347 bps can t h u s  be achieved for the RSA scheme implementation. If 
we take rn = 128, the RSA scheme implement.at,ion at  a circuit scale of 7 .4667 
gates and a processing speed of q .  6.2 I ibps can  be achieved. Consequently, it 
is shown that this method can realize an efficient RSX scheme implement.ation 
for the increase in speed. 

3.4 Chip Implementation Using the Systolic-Array Approach 

AS shown in 3.2,  s ince  t h e  repeating rriodular multipiicatlon circuit can be 
constructed using optional q PEs (131072 2 q 2 l j ,  we const.ruct a modular 
multiplication circuit wi th  favorite c i r c u i t  scale. At t h a t  point t h e  creation of 
chips (hereafter referred t o  as SYRCs, Systolic RSX Cliips) i n  units wit11 favorite 
number of PEs, in  combination wit11 R A l l ,  both of wliicli can be controlled by 
external programming thus affecting a way to achieve the RS:\ scheme imple- 
mentation. The  external programming can he constriicted in a flexible way using 
the RORI. Also, i f  a greater processing speed is required, many SYRCs can be 
connected as shown in Fig.10. Fig.11 shows the difference of processing speed 
between using 2 SYRCs and using 3 SYRCs i i i  tlie implementation of Fig.10. 
I t  is easy to understand that the implementation using 3 SYRCs is 1.5 times 
faster than that of using 2 SY’RCs. Like these examples, this irnplement,ation 
can  achieve a speed-up proportional to tlie number of SYRCs and can realize 
higli-speed real-time processing. The same characteristic can he also easily ac- 
complished by changing the n u m f x r  or t.imes the SYRC processing occur s  with 
a control circuit. 

M’hile, since this method is hascd 011 n systolic a r r a y ,  t l i i s  irietlioti is s i i i t a b l e  
for the VLSl (Very  Lar,ge Scale Integration) implementation. If \‘LSl is utilized, 
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Fig.11 : Difference of processing speed between using 2 SYRCs and using 3 SYRCs 

high-speed RSX scheme implementat,ion in one chip is easily constructed because 
of the regularity and simplicity of the structure. Also, since the processing tha t  
occurs in one PE is simple integer calculations, even without. putting the PEs 
onto a separate chip the modular multiplication algorit,lirn shown in 3.1 can 
be realized using the normal DSP or CPU etc.. As shown above, the modular 
multiplication method demonstrated in this secbion is rtseful because i t  is estra- 
ordinarily easy to circuitize and in1provement.s in speed are ea..ily att,ainable. 

3.5 Another Utility of the Systolic- Array Approacli 

I t  is known t h a t  the processing can be sped up with a same circuit  scale using 
the CRT (Chinese Remainder Theorem) [QC62]. \\'hen an RSA implementation 
using the CFiT is at tempted,  the problem of creating different bit numbers for 
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multipliers and divisors makes use of the same modular multiplication circuit for 
both enciphering and deciphering difficult to realize. However, since the modular 
multiplication circuit in this section enables an easy trade-off behveen circuit 
scale and processing events, enciphering and deciphering can be realized on the 
same circuit if we change the processing events for the  difference in multipliers 
and divisors. This can be easily affected by simply changing the control of the 
number.of feedback inputs to the SYRC for enciphering and deciphering with a 
control circuit. Using the CRT to increase processing speed can yield at most 
a quadrupled rate on the  same circuit scale. Consequently, when the method 
outlined in this section uses the CRT, the processing speed demonstrated in 
the previous sect,ion can be increased by approximately 4 times, thus making 
the construction of an estremely efficient RSA scheme implementation possible. 
Also, since the  RSA deciphering using the CRT can be basically achieved in 
parallel processing, when modular multiplication is achieved with multiple chips, 
this paper's method is suitable from this point of view. 

This also means tha t  effective support for changes in the bits of keys e and 
N can be achieved with the method shown in this section. In  order t o  increase 
the security of the cryptmystem, even when hr is made larger, if the number 
of feedbacks to the SYRC and the size of RON for the modular reduction is 
increased then support is possible. Although this lowers the processing speed, if 
the number of SYRCs is increased, i t  is possible to maintain the same processing 
speed. 

4 Conclusion 

Each i in Fig.12 shows t h e  RSX implernent.ations wit11 known processing 
speeds a n d  circuit scales. Except for [TfIAA-\S8], a t.rend of pursuing smaller 
circuit scales within 100Khps and of gett.ing higher efficiency can be observed. 
If the horizontal co-ordinate is the same, then tlie lower the vertical cc-ordinate 
the more efficient the syst,em is. In particular, the propose in Section 2 exhibits 
the best efficiency. i.e., 2.0 bps/gate. For processing speeds more than IOOIibps, 
however, like the implementation described i n  [TIlAAS8],  no efficient way has 
been reported for constructing appropriate scaled circuits for the RSA imple- 
mentation. A n y  conventional method, even one i n  Sect.ion 2,  would require a 
circuit scale which rapidly grows as the processing speed iiicreases. 

Section 3 resolved this difficulty by introducing the syst,olic array architecture 
and attained RSA implementations of constant efficiency as shown i n  l ines a 
and 6 in Fig.12, where rn = 6.1 is adopted. In t.hese systolic implement.ations 
tlie circuit scale incre3ses linearly in the required processing speed. And the 
efficiency is improved i f  tlie value of m is incren5ed. 

The  systolic approach gives a systematic way of designing RSA liardwares in 
a wide range of circuit scales and process ing  speeds. Its characteristics are listed 
below: 

1) Since tlie nurnber of PEs on a c h i p  is opt.ional, we can  m a k e  a ch ip  to 
favorite scale. To increaw the processing speed,  one would mcrely have to 
increase t.he n u m b e r  of t h c  chips.  
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Fig.12 : Comparison of implementations proposed in this paper wit.11 those 
proposed so far 

2) This method allows t h e  same chip to implement blie deciphering or signing 
(the secret transformation) wit.11 the aid of the CRT and the encipher- 
ing or signature-verification (tlie puhlic transformatioll). Usirlg G M O S  
gates, which can be produced cheaply in  large quantity due to the present- 
day semi-conductor technology, a one-chip RSA implementation achieving 
G4Iibps bu t  using at most 20Iigates can he realized readily 1)y adopting 
CRT-based secret transformations and moderate-sized public esponents  e .  

3) A systolic a r ray  archit.ecture is simple and r ep la r .  and tliiis, suit.al)le for VL-  
SIs. An RSX implementation using VLSI enables a single chip to achieve 
hlega bps. 

4) Since the calculat.ions processed wi th in  t.Iie PEs a r e  simple illt.eger calcula- 
tions, an  efficient R S X  implementation can I)e constructed even I)? the use 
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of CPUs or DSPs. 

In conclusion, the methods outlined in this paper lead to the constructive 
and effective ways for implementing the RSA scheme. 

On the other hand it is known that the Montgomery method [Mont85] is an 
effective algorithm for modular multiplication. We already have a short paper 
[IMI92] proposing systolic arrays for the Montgomery method which can realize 
more efficient and more flexible implementation in the wide range of processing 
speed. 
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Appendix 

Theorem 
In ALGORITHM 1A when - 4 k - j  . B;, Ej-l,;,  Dj-1,j and C j - ~ , ~ - i  are respec- 
tively nz-bit, m-bit, (rn - 1)-bit and %bit values, the most significant 3 bits 
of 

is less than [111] for rn 2 3.  
Rj,; = Ak-j . B; + Ej-1,; + 2 Dj-i,i + Cj-1,i-1 

Proof 
Because Ak- j .B;  5 2"-1, Ej-,,; 5 2--1, 2.Dj-1,; 5 2"-2 and C,-l,;-l 5 7, 
we have 

Thus, if m - 1 2 2,  that is, m 2 3, then the  most significant 3 bits of the 
right-hand side is equal to [110]. 

R.; I t  < - (2' + 2') . 2m-' + 2l  + 2". 
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