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Abstract. This paper proposes two novel implementation methods for
the RSA cryptographic scheme. (1) The most efficient RSA implemen-
tation known to the present authors. This implementation achieves 50
Kbps at about 25 Kgates for a 512-bit exponent e and a 512-bit modulus
N. Thus the efficiency is 2.0 bps/gate. (2) A systolic architecture useful
for high-speed and efficient and flexible chip implementation of the RSA
scheme.

1 Introduction

Modular exponentiations (or powerings) are elementary operations for cryp-
tographic transformations in public-key cryptosystems like the RSA scheme
[RSAT8]: C = M*® mod N, the ElGamal schemes, and so on. These cryptosys-
tems’ security is based on the difficulty of factoring integers or that of comput-
ing discrete logarithms. To achieve enough security level, the word lengths in
the modular exponentiations should be significantly greater than those used in
conventional general-purpose computer hardwares. The required typical word
length is around 512 bits or more. A modular exponentiation can be accom-
plished by iterating modular multiplications. Thus, for obtaining high-speed
implementations of the RSA scheme and the like, it is quite natural to pursue
techniques for speeding up modular multiplications for integers of 512 bits or
longer.

A lot of efforts have been done in this field [Bric82)-[WQ90]. Reference
[Bric89} surveys various hardware implementations of the RSA scheme. We
add Table 1 for introducing other implementations, not mentioned in [Bric89],

Table.1: Some of the implementations for the RSA scheme so far presented

Reference | Baudrate | bits | Gates || Reference Baudrate | bits | Gates
[Miya83] 50K | 512 | 280K || {TAAST] 100K { 256
(KMTST7] TOK | 512 | 160K || [THAASS) 500K | 512
[MoriQO} 80K | 512 30K || [TWDS91] G4l | 512
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Fig.1: Efficiency and Flexibility

with known circuit scale (Gates) and known processing speed (Baudrate). It
should be noted that in Table 1 [Mori90] shows an implementation only for
modular multiplication and [TAA87] presents an RSA implementation for a 256-
bit exponent and a 256-bit modulus. If we define the efficiency of implementation
as

(efficiency of implementation) = (processing speed)/(circuit scale)

then many of hardware implementations so far reported are not so efficient.
This measure may be appropriate from the practical view point of achieving
high-speed and smaller circuits. The better efficiency is realized by the imple-
mentation with the smaller circuit scale and the higher processing speed.

We define another measure called the flexibility, which represents the degree
of linearity between the processing speed and the circuit scale. To illustrate this
notion, we examine two virtual implementations named Metliod A and Method
B, each of which relationship hetween the circuit scale and the processing speed
is given in Fig.l. We consider that Method A is not flexible because it is not
efficient in the wide range of processing speed. In contrast, Method B is flexible
since it realizes implementations with the same efficiency in the wide range of
processing speed. In this paper we propose two implementation methods for
modular multiplication from these points of view.

Section 2 shows a modular multiplication algorithm and circuit with the best
efficiency rating of all algorithms and circuits introduced to date and known to
thie present authors. Based on this Section 2 described an RSA implementation
achieving 50 Kbps at about 25 Kgates for a 512-bit exponent e and a 512-bit
modulus V. Thus the efficiency 1s 2.0 bps/gate.

Section 3 presents a flexible modular multiplication algorithm based on sys-
tolic array, a way of parallel processing. This high speed processing method
utithzes a pipeline processing by means of several types of processing elements
{henceforth abbreviated as PEs) each of which is controlled locally and regu-
larly. Also the algorithm is suitable for chip implementations because a chip
can be constructed simply and regularly with favorite circuit scale and because
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the RSA processing speed increases in proportion to the number of chips. This
implementation can allow an increase in speed based on the Chinese remainder
theorem in the same chip implementation because it permits variable bit number
for the encryption keys.

Lastly in Section 4, the results of this paper are compared with previously
obtained results and are shown to be better from the practical view point. See
Fig.12. Parallel processing applied to the RSA scheme gives an architecture that
allows for the increasing of speed for processing and the reduction in size of the
circuit scale systematically.

2 An Efficient Implementation for RSA Scheme
2.1 An Efficient Modular Multiplication Circuit

Consider the modular multiplication R = A- Bmod N (with N, A, B, R
being k = mn - n bit integers). We express A in binary and B and R in radix
X = 2™ as follows,

A = Apq -2V Ao 224+ A 24 Ag (1)
B =Bn_1-X"—1+B,,_2-X"_2+"'+Bl'X+Bo (2)
R =Rﬂ_x-X"_1+Rn_2'X"_2,,+"'+R1'X+Ro (3)

where A;_; € {0,1} (j = 1,---,%k) and B;, R; € {0,1}™ (i = 0,---,n - 1).
Then the modular multiplication can be calculated by the consecutive execution
of the following two algorithms: ’

ALGORITHM 1A
(Input‘: AO: ct 1Ak—l; BO) - !Bﬂ—l; N)
(Output: Rpo,---, Rkn-1)

Do; =0; Coi=0
FOR j=1TO & |
Ej y=Ej_tn1 X" '+ 4+ Ej_10=(Cjin-1- X")mod N (4)
FOR:=0TO n-1
Rji=Dj1i 2+ Cjo1i-1+ Ak-j  Bi+ Ej_1i
Dj,,' = dwm_l(lei)
C;ji = upm-1(R;;)
NEXT
NEXT

where dw,(Z) = Z mod 2° and up,(Z) = (Z — dw.(Z))/2°.
ALGORITHM 1B

(Input: Rio,-+, Ren-1; N)

(OUtPUt‘: RO! ot 1Rﬂ—1)

R =Ruq- X"V 4Ry -X"24 ..+ R -X+ Ry
= (Ripo1 " X" '+ Ripoa - X" 24+ Ry - X + Rig)mod N (5)
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Fig.2: An efficient modular multiplication circuit

Fig.2 1llustrates the principal part of our modular multiplication circuit,
namely the circuit implementing ALGORITHM 1A. The index i goes from left
(1 = 0) to right (i = n— 1) and corresponds to the position of the register, multi-
plier, adder and the modular-reduction circuit, whereas the value j corresponds
to the clock. Each circuit except registers is realized as helow.

1) Multiplication: the multiplier is easily realized by AND gates which output
B; only when A;_; is 1. Therefore the circuit scale of the multipliers is small.

2) Addition: the adder is realized by 4-input addition functions of which inputs
are Ag_; - B; from the multiplier and E;_; ; from the modular-reduction circuit
and Dj_;,; -2 and C;_y,_;. Since A_; - B; and E;_,; are m-bit and D;_;
is (m — 1}-bit, the fact that C;_y;_ 1s less than an m-bit value leads that the
value enters the register from the adder is {m + 2)-bit and thus, C;; is 3-bit.
Therefore in the case where m > 3 the circuit scale for the carry-bit registers is
small compared to the whole circuit scale for registers, because there are 2 carry
bits for every m—bit added result.

3) Modular Reduction: it is easy to see that C, ;. the 3-bit carry, doesn't take the
value [111] (See Appendix). The residue £;_y; (i = 0,---,n — 1) is derived as
Expression (4) from Cj_ n_1. Since Cj_y oy takes 3-bit values (000], (001}, - - -,
[110], except for [111], each E;_;; takes only T patterns including E;_10 = 0
These residue patterns can be selected by the selectors S in Fig.2. Therefore
the delay time of modular reduction is short. With this circuit, the modular
reduction processing is simplified because of the no need to compare divisors
with dividends and operate negative numbers. Also, since Ej_jn-; is a true
value, these values can be input into the addition circuit as they are.

The outputs Ry o, -, Re ay € {0,1}™2 from the circuit should be modified
by an auxiliary small circuit for ALGORITIHM 1B, which compensates the carry
bits in R ; so that they become all zero after the final calculation and corrects
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the final value of R to be less than N. Such a small circuit will have little effect
on the overall processing speed. This is the reason why it is omitted from Fig.2.

2.2 Circuit Scale and Processing Speed

Assuming that the proposed circuit is fabricated by C-MOS technology, let
us evaluate the circuit scale according to those of the Fujitsu Standard Cells
[FujG88], [FujM88].

When k equals 512 and m equals 4, the modular multiplication circuit of
roughly 25 Kgates is possible. (The residues Eq, Ey, -+, En—1 are calculated
and set by ancther circuit from the value of N in relation of Expression (4).)
Since the processing time required for 1 clock is realized at the order of 20 ~ 30
ns using C-MOS gates, the circuit in Fig.2 needs approximately 13us to execute
one modular multiplication R = A - B mod N. Subsequently, when the keys ¢
and NV are each at the 512 bit, RSA encryption using this modular multiplication
circult can be achieved at a processing speed of 50 Kbps. Also, if the 6 non-zero
values for £ ; derived from N are used as the public-key instead of the modulus
N, then the preprocessing required for E;; can be eliminated.

Table 1 and the reference [Bric89] show various implementations for the RSA
scheme up to date. Even though an unconditional comparison cannot be made,
when efficiency is defined as the processing speed per one gate (processing speed
/circuit scale), we attempt an evaluation of several examples of the RSA scheme.
Among the RSA scheme implementations developed until now, that of [THA A88]
achieves the highest processing speed of 500 Kbps, however it needs a scale
greater than or equal to 640 Kgates. It yields an efficiency of 0.78 bps/gate.
A modular multiplication circuit for the RSA scheme [Mori90] can achieve a
processing speed of 80 Kbps using a 50 Kgates circuit scale. The modular
multiplication circuit yields an efficiency of 1.6 bps/gate, and can be considered
to be the most efficient before this paper.

While, the circuit proposed in 2.1 yields an efficiency of 2.0 bps/gate, and
can thus be described as more efficient than that of [Mori90]. Further, since the
modular multiplication circuit in [Mori90] requires the circuit for Booth algo-
rithm, both the control and calculation algorithm of the circuit proposed herein
can be considered simpler than that of [Mori90]. Consequently, the modular
multiplication circuit in Fig.2 allows the most efficient implementation of the
RSA scheme to date.

3 Systolic Arrays for RSA Scheme

3.1 An Approach to Design Systolic Arrays for Modular Multiplica-
tion

Modular multiplication: 2 = A- B mod N can be calculated by the recursive
execution of

R]'ZQ'R]'_1+.4L~_J<B+EJ'_1 (6)
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Fig.3: Data dependence graph for modular multiplication

from j = 1 to j = k, where Rg is 0, and where E;_; is the residue shown in
Expression (4).

A data dependence graph can represent a version of the recursion obtained by
using m-bitwise slicc. We propose the graph given in Fig.3 where each column
of n cells performs Expression (6) and the row of & such columns illustrate
the recursive execution. In the rest of this subsection, we give an intuitive
explanation of the key idea for our systolic arrays.

The inputs B flow from left to right along the horizontal arrows, and the
inputs A flow downward along the vertical arrows. The result of the computation
done in each cell is divided into the least significant m — 1 bits D and the rest
of bits C (the carry bits). The 1-bit shifted D (double of D) is input to the cell
in the same row and in the right next column. The 1-bit shifted C (double of
C) is input to the cell in the upper next row and in the column two positions
to the right. For each cell in the top row the carry bits C is translated into a
residue £ and E affects the right next column of cells. Such a trick is to avoid
the increasing of the size of data treated in each cell and to ensure a regular and
efficient pipeline structure.

Observe that between each pair of consecutive columns there are three types
D, C1, and C2 of data flows as well as the flow of B. For each column, C1
denotes the type of C made in the column and C2 denotes the type of C passing
through the column. Each column can be realized by a single processing element
(PE) defined as Fig.5 and the row of & such columns can be implemented as the
connection of & PEs. See Fig.4. The j th PE holds the value of Ai_; at one of
its internal registers. The carry bits C produced at the top cell in a column in
Fig.3 is hold at a register as S,,, in the corresponding PE in Fig.5. The ROM
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Fig.5: Processing element in Fig.4

in each PE accepts the 5,4 coming from the left next PE as

Sin and outputs a residue E specified by S;, in m-bit wise according to an
input sequence of timing signals T,,_{, Th-2, --, 7p.

Since the form of the data D, C1, and C2 appears in the array differs from
that of the input data, the modular product of two integers, output from the
array cannot be directly used as another input to the same array. Thus, using
only the array we cannot execute modular exponentiation. We describe in the
next subsection a method to eliminate such a drawback and propose an effective
systolic array.

3.2 A Systolic Array for Modular Multiplication and Compensating
Carry Bits

We consider the modular muitiplication K, = A, - B, mod N, where A, =
A+a X,B.=B+b6-Xand R. = R+r X. A B and R are shown

Expressions (1) - (3), respectively and a, b and r arc expressed as follows,
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l

a ak—m'zY"'2+"~+ag4m~X+am
b o =bpey X" by X+ by
o= X X g

where, ar_j, bn_i, T €{0,1} (j=m,2-m,---  (n=-1)m)(i=1,---,n-1),
and ax_j, bn_i, Th_; are 1-bit carry bits by every m-bit group. The modular
multiplication R, = A, - B, mod N is calculated as shown in ALGORITHM 2.

Fig.9 is the systolic array for ALGORITHM 2 and PEA, PEB, and PEC’s
processing is executed by the PE shown in Fig.6, Fig.7, and Fig.8, respectively.
The neighboring PEs is connected between X, and X;, (X =4,B,5,D,C and
T) In ALGORITHM 2, the value 7 refers to the clock, and j refers to the number
for the PEs, so that from right to left j = 1 to j = k + n refers to each position
of the PEs. PEA calls 1 PEB for every m turns, and for the final calculation
calls PEC instead of PEB in Fig.9.

In the first PE(j = 1) of Fig.9, Bn_; and b,_;{(i = 1,---,n) are input from
B;s and b;, simultaneously in order from the upper row. Also, the timing signal
Thi =n~—~1{i =1, --,n) referring to the modular-reduction circuit is input
from T;, synchronized with B,_;. B._;, b,_; and T,_; are held back by one
clock in internal registers of the PEs, then are output to the next PE from B,y;,
bout and Toy:. In the first PE the values input for Dy, S;, and C;, are set to 0.
Each PE’s composition elements and actions can be explained in the following:

PEA : The value A;_j,, is preset in the internal 1-bit register of j-th PEA. The
multiplier is constructed with m+ 1 AND gates and outputs Ar—; 4, - Bai
and Ag-j4s - ba_i. The adder is based on the 5-input from the multiplier
outputs Ag_;4, - Ba_yand Ag_j4, - by, the modular-reduction clrcuit’s
output E;_ 1 i, and the previous PE's output 2 - dwm_1(R;_1,a-i) and
the output 2-Cj_2.n_i—1 of the two PEs before. Since A;_j4, - Ba_; and
E; .. are m-bit and dw., (R ,.-:) is m — 1-bit and Ae_jy, - by
is 1-bit, the fact that 2-Cj_2,_i_; is less than an m-bit value leads that
the value enters the register from the adder is m + 2-bit. The residue
E;_1 n-i is derived from Expression (7) in relation of up,-1{Rj_y no1) =
Cj-1.n-1. Since B,_; and Ej_| ,_; are in the same digit, £, 1, (i =
1,---,n)can be gradually output according to the timing signal T,_; which
is synchronized with B,,_;. Since C;_y »_y is 3-bit and T,,_; is log n-bit, the
output circuit for E; { »_; can be realized by ROM! (read-only-memory)
holding input of 3 + logn bits and output of m bits and the selector and
the register for the 3 bits to save the value of C,_; 1.

PEB : In the internal register of this PE the value ax_j 4,4 is preset. Since
@i—jt+a+1 and Ar_;4, in the previous PE correspond to the same bit In
the binary expression, dwm (£;_1 »—;) and Cj_2 n_i_; are not doubled and
Citn-i 15 upm(Rj—1 ni).

PEC : This PE aims at to make the output 7,_; (z = 1,.-- . n) one bit.
This PE adds the outputs Dy.,, Sour, and Coy. from the previous PE

and creates the single value Ry, ;. Next the PE delays the value
dwm(Retn ni) in the register and adds it to the value up.(Riyn i}, and
produces Riqpniini € {0, 1} (i = 1,--. n). The most significant bits

UPm(Riin not) s saved in a separate register. Since the residue Eiyqa
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Fig.9: Systolic-array for modular multiplication using PEA, PEB and PEC

1s calculated by (CC - X™)mod N, Riinsan-i = dWm(Retnt1n-i) +
Upm(Ritnt1n—i-1)+Eigntiniand Riynqon—i € {0,1}7F (i=1,---,n).
However, pre-modular multiplication is performed in the check circuit
shown as C in Fig.8 to set the most significant bit r,_; = 0. Since the most
significant bits of residue Ey4 from the value CC is calculated in advance,
the pre-modular multiplication dw,,(Risny1n-1) + uPm(Ritntin-2) +
E.4 can be calculate. If the most significant bit of the pre-modular mul-
tiplication is 1, the fact that Ey 1,4, takes ((CC + 1) - X™) mod N leads
ra_y = 0. This checking circuit is executed with 3 bits of ROM and an
adder.

Consequently, the repeating modular multiplication such as the RSA e_nci—
phering and deciphering can be achieved with a systolic array as shown in Fig.9.
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ALGORITHM 2

(Input: Ao, -, Ap_1; Gm, ., @k—m; Bo, -+, Bno1; b1, bpo1; N)

(Output: Ro, -+, Raq; 7o, -, Ty)

Ro.ﬂ—i;’O; CU,n-—i:U
FOR s=0TO k/m~1
FORc=1TO m
J=s-(m+1)+ec _
Eig=Ejiin - X"ty 4+ Ei_10
= (qu—l(Rj-l,n—1) A"y mod N
FOR/i=1TOn

> =

Cj—l,n—i = upm—l(Rj—l,n—i)
NEXT
NEXT
IF s=k/m-1THEN GOTO PEC
J=J+1
Ei v =Fj_jpoy X704 4 E;~10
= (upm(Rj_l‘,,_l) : ,\’n) mod NV
FORi=1TOn
Rj,n—i :dwm(Rj—l,n—i)'l'“Cj—-'.’,n—i—l

sal 3 Ta e

Cj—l,n—i = upm(Rj—l,n—{)
NEXT
NEXT
FOR:=1TOn
Rk+n,n—i = Rk+r\—1.n-i + Ck-{—n—'l,ﬂ-i—)

(@R e

Eaq =((CC-X")mod N)/X"~!

Rinoi =2 dwm_(Rjcin i)+ 2-Cj_amni1
+A}:—j+s ) (Bn—i -+ bn—i) + Ej—l,ﬂ—f

(M

(8)

Fak ety (Baoi 4+ b)) + Ei 1na

Rk+n+1‘n—i = dwm(Rk-%-n,n—i) + upm(Rk-{»n,n—i«-l)
ccC = (upm(Rk«i-n,n—l) +1‘Pm(Rk+n+l,n~l))

IF dwm(R‘:+n+1,n—1) + upm(lzk+n+1,n—") + Ead Z X

THEN CC=CC+1

‘n—1
Eitntt = Eignttn-t A" 4+ Ergngio

=(CC-X")mod N

Rk+n+'_"n—i = du’nx(Rki-n-‘#l,ﬂ—i) + qu(Rk'Fﬂ'Hﬂ—"—l)

+Ekins1ni
Ro_; = dunm(Regnian-s)

IF i=1THEN r,_, = 0 ELSE r,_; = upm(Risnian_i)

NEXT
where dw,(Z) = Z mod 2% and up,(Z2) = (Z — dw,(Z))/2°.

3.3 Circuit Scale and Processing Speed

At first we evaluate the circuit scales of PEA, PEB and PEC, and show them

mn Tahle.2 for in = %
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Table.2: Circuit scale of PEs form = 8

PEA | PEB | PEC
multiphication 20 20 0
addition 204 204 464
modular reduction 404 306 404
delay 94 94 38
total 812 | Tl4 [ 906

Table.3: Efficiency of PEA for m

m 16 32 64 | 128 |
multiphication 31 55 103 199
addition 451 891 1771 3531
modular reduction 410 410 349 318
delay 138 232 425 819
PEA’s circuit scale | 1030 | 1603 2648 4867
number of PEs 544 528 520 516
total circuit scale 361K | 847K | 1377K | 2512K
processing speed 400K | 800K | 1600K | 3200K |
efficiency 0.71 0.94 1.16 1.27

In order to construct a systolic array shown in Fig.0, 512 PEAs, 63 PEBs
and 1 PEC are necessary. For simplicity’s sake, if the systolic array in Fig.9
consists of 576 PEAs, its circuit scale becomes 468 Kgates.

Since the processing time needed for 1 clock is the time to go from the selector
to pass the ROM and the adder, if a bi-polar ROM is used a processing time of
about 50 ns can be achieved. When the RSA scheme keys e and ¥ are 512 bits,
a processing speed for the RSA scheme can achieve at about 200Kbps. This
means that even if data is entered at the speed of 200Kbps successively, real-
time processing by means of the pipeline processing of the systolic array without
buffer overflow is possible.

Table 3 shows PEA's circuit scale and processing speed for selected m’s. Since
the delay time for the adder increases as the value of m increases even when m
is doubled it can be considered that the processing speed will not double, but,
rather, somewhat decrease. Hawever, if the processing speed as m increases
is compared to the heap of the delay time, the influence of the delay time is
ignorably small. Consequently, we realize that as m increases the efficiency
mcreases.

Also, since the functions of PEA, PEB and PEC resemble each other, a
common PE can be constructed only increasing a small circuit scale as compared
with that of PEA. The common PE calenlates a partial modular multiplica.tion'
suchas H; =2 - R+ Ai_; - B, mod N and/or R, = R;_ + ae-j- B. mod N
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| CONTROL B

Fig.10 : Chip implementation using Systolic RSA Chip

, and the pipeline structure by ¢ PEs realizes partial modular multiplications
g times. Consequently, processing speed of a modular multiplication can be
increased in proportion to the increase of the number of the PEs. Further, the
pipeline structure with the PEs can keep the same efficiency for an increase in
speed. For example, if we take m = 8, a circuit scale of ¢*812 gates (with ¢ being
an integer representing the number of PEs, 131072 > ¢ > 1) and a processing
speed of ¢-347 bps can thus be achieved for the RSA scheme implementation. If
we take m = 128, the RSA scheme implementation at a circuit scale of q - 4867
gates and a processing speed of 7 - 6.2 Kbps can be achieved. Consequently, it
is shown that this method can realize an efficient RSA scheme implementation
for the increase in speed.

3.4 Chip Implementation Using the Systolic-Array Approach

As shown in 3.2, since the repeating modular multipiication circuit can be
constructed using optional ¢ PEs (131072 > ¢ > 1}, we construct a modular
multiplication circuit with favorite circuit scale. At that point the creation of
chips (hereafter referred to as SYRCs, Systolic RSA Chips) in units with favorite
number of PEs, in combination with RAM, both of which can be controlled by
external programming thus affecting a way to achieve the RSA scheme imple-
mentation. The external programming can be constructed in a flexible way using
the ROM. Also, if a greater processing speed is required, many SYRCs can be
connected as shown in Fig.10. Fig.11 shows the difference of processing speed
between using 2 SYRCs and using 3 SYRCs in the implementation of Fig.10.
It 1s easy to understand that the implementation using 3 SYRCs is 1.5 times
faster than that of using 2 SYRCs. Like these examples, this implementation
can achieve a speed-up proportional to the number of SYRCs and can realize
high-speed real-time processing. The same characteristic can be also easily ac-
complished by changing the number of times the SYRC processing occurs with
a control aircuit.

While, since this method is based on a systolic array, this method is suitable
for the VLSI (Very Large Scale Integration) implemnentation. IT VLSI is utilized,
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Fig.11 : Difference of processing speed between using 2 SYRCs and using 3 SYRCs

high-speed RSA scheme implementation in one chip is easily constructed because
of the regularity and simplicity of the structure. Also, since the processing that
occurs in one PE is simple integer calculations, even without putting the PEs
onto a separate chip the modular multiplication algorithm shown in 3.1 can
be realized using the normal DSP or CPU etc.. As shown above, the modular
multiplication method demonstrated in this section is useful because it is extra-
ordinarily easy to circuitize and improvements in speed are easily attainable.

3.5 Another Utility of the Systolic-Array Approach
[t is known that the processing can be sped up with a same circuit scale using

the CRT (Chinese Remainder Theoremn) [QC82]. When an RSA implementation
using the CRT is attempted, the problem of creating different bit numbers for
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multipliers and divisors makes use of the same modular multiplication circuit for
both enciphering and deciphering difficult to realize. However, since the modular
multiplication circuit in this section enables an easy trade-off between circuit
scale and processing events, enciphering and deciphering can be realized on the
same circuit if we change the processing events for the difference in multipliers
and divisors. This can be ecasily affected by simply changing the control of the
number.of feedback inputs to the SYRC for enciphering and deciphering with a
control circuit. Using the CRT to increase processing speed can yield at most
a quadrupled rate on the same circuit scale. Consequently, when the method
outlined in this section uses the CRT, the processing speed demonstrated in
the previous section can be increased by approximately 4 times, thus making
the construction of an extremely efficient RSA scheme implementation possible.
Also, since the RSA deciphering using the CRT can be basically achieved in
parallel processing, when modular multiplication is achieved with multiple chips,
this paper’s method is suitable from this point of view.

This also means that effective support for changes in the bits of keys e and
N can be achieved with the method shown in this section. In order to increase
the security of the cryptosystem, even when N is made larger, if the number
of feedbacks to the SYRC and the size of ROM for the modular reduction is
increased then support is possible. Although this lowers the processing speed, 1f
the number of SYRCs 1s increased, it is possible to maintain the same processing
speed.

4 Conclusion

Each + in Fig.12 shows the RSA implementations with known processing
speeds and circuit scales. Except for [THAASS], a trend of pursuing smaller
circuit scales within 100Khps and of getting higher efficiency can be observed.
If the horizontal co-ordinate is the same, then the lower the vertical co-ordinate
the more effictent the system is. In particular, the propose in Section 2 exhibits
the best efficiency. i.e., 2.0 bps/gate. For processing speeds more than 100Kbps,
however, like the implementation described in [THAAS8S], no efficient way has
been reported for constructing appropriate scaled circuits {or the RSA imple-
mentation. Any conventional method, even one in Section 2, would require a
circuit scale which rapidly grows as the processing speed increases.

Section 3 resolved this difficulty by introducing the systolic array architecture
and attained RS5A implementations of constant efficiency as shown in lines @
and & in Fig.12, where m = 64 is adopted. In these systolic implementations
the circuit scale increases linearly in the required processing speed. And the
efficiency is improved if the value of m is increased.

The systolic approach gives a systematic way of designing RSA hardwares in
a wide range of circuit scales and processing speeds. [ts characteristics are listed
below:

1) Since the number of PEs on a chip is optional, we can make a chip to
favorite scale. To increase the processing speed, one would merely have to
Increase the number of the chips.
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proposed so far

2) This method allows the same chip to implement the deciphering or signing
(the secret transformation) with the aid of the CRT and the encipher-
ing or signature-verification (the public transformation). Using C-MOS
gates, which can be produced cheaply in large quantity due to the present-
day semi-conductor technology, a one-chip RSA implementation achieving
64Kbps but using at most 20Kgates can he realized readily by adopting
CRT-based secret transformations and moderate-sized public exponents e.

3) A systolic array architecture is simple and regular, and thus, suitable for VL-
SIs. An RSA implementation using VLSI enables a single chip to achieve
Mega bps.

4) Since the calculations processed within the PEs are simple integer calcula-
tions, an efficient RSA implementation can be constructed even by the use
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of CPUs or DSPs.

In conclusion, the methods outlined in this paper lead to the constructive
and effective ways for implementing the RSA scheme.

On the other hand it is known that the Montgomery method [Mont85) is an
effective algorithm for modular multiplication. We already have a short paper
[IMI92] proposing systolic arrays for the Montgomery method which can realize
more efficient and more flexible implementation in the wide range of processing
speed.
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Appendix

Theorem

In ALGORITHM 1A when A;_; - B;, Ej_1;, Dj_1,i and Cj_1n-; are respec-
tively m-bit, m-bit, (m — 1)-bit and 3-bit values, the most significant 3 bits
of

Ris=Ar ;- Bi+FEj 1i+2 D0+ Ciyin
is less than [111] for m > 3.

Proof
Because Ay _;-B; <2™—1, E;_,; <2™-1,2.D;1;<2™-2and C;_, ;-1 <7,
we have

Rj,,' < (22 + 21) Lgm-l + ot -+ 99,

Thus, if m — 1 > 2, that is, m > 3, then the most significant 3 bits of the

right-hand side is equal to [110].
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