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Abstract — This paper proposes two ideas for modular exponentiation using Montgomery method. (1A
novel algorithm for modular exponentiation withaut operation of subtracting N for every Montgomery's
modular multiplication (MMM). (2) Two types of systolic-array for MMM which can realize more efficient
and flexible chip implementation than the array in [1].

1 Introduction

We have proposed a systolic-array for modular multiplication [1], which we will refer to as Array-A in the
following. Array-A is practical for modular exponentiation and is very suitable for chip implementation.
However Array-A does not achieve the ultimate efficiency in the wide range of processing speed, when the
efficiency is defined as (processing speed)/(circuit scale). In this paper, we propose a novel algorithm for
modular exponentiation using simple repetition of Montgomery's modular multiplication (MMM) [2] in
Section 2, and in Section 3 we propose the structures and actions of more efficient systolic-arrays {Array-
B, Array-C) suitable for MMM in the wide range of processing speed than Array-A. Combining these
proposals, we have efficient and fast hardware algorithms for modular exponentiation. In Section 4, we
show that compared with the use of Array-A the use of Array-B and that of Array-C respectively achieves
more efficient high-speed processing and more flexible implementation for modular exponentiation.

2 A Novel Algorithm for Modular Exponentiation

Definition 1 For integers NV, R, A, and B, let Monty (A, 5) denote the rational number

A-B+{{(A-B-(-~N~" mod R)) mod R)- N
7 )

N(Oﬂf.N‘R(A, B) =

We have the following fact due to Montgomery (2].
Proposition 2  For relatively prime integers N and R, and for integers A and B, Monty a(A, B) is

an integer such that

Monty r(A, B) = ABR'mod N (mod N).

We cali Montwn,g(A, B} the Montgomery's Modular Muiltiplication (MMM).

The condition that the maximum number of bits in A, in B and in Monty (A, B) are the same is
described as follows:
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Theorem 3 Let N, R, A, B, », r, and | be integers and assume
<N <2 0< <2, and ged(N, 1) = 1.
The necessary and sufficient condition for that

0<A<?, 0<B<?, and 0< Montyp(4,B) < 2!
n+l1<i<r—1 (1)

(Proof) Let 0 < A <2 and 0 < B < 2. Since it is straightforward that
0 < Montya(A, B) < max{22‘"'“,2"“}
the necessary and sufficient condition for
0 < Monty r(A, B) < 2

is that
max{QZl—r+l’2n+l} S 21

which is equivalent to
2'2!—r+l < 2[ and 2n+1 < 2'

which is equivalent to (1).

Thus we let n+ 1 < ! < 1 — 1 so that the output of MMM can be directly used as the next input
to MMM, The smaliest possible value of {is | = n + 1 and of r is = n + 2. Using this condition and
introducing fip = I? mod N, we propose the following algorithm which evaluates modular exponentiation
C = M*® mod N with repeated MMMs and a final modular reduction modN.

Algorithm 4

(Input:  M,e=(eg,-~-,€1)3, N, , Rp = R* mod N)
(Output : C = M*® mod N}
Mg = Month[;(A[, RR)
Cn = Monty (1, Rp)
FOR i1=4 TO
{F € = 1 THEN CR = MOHLNJ{(CR, M[()
{Fi>1 THEN Cr = Montyr(Cr,Cr)
NEXT
Cr = Montn p(1,Cn)
C=Cpmod N

Algorithm 4 has the following useful features:

(1) Algorithm 4 employs ordinary modular multiplication only at the precomputation of Rg which can
be done independently with M. All the rest of modular multiplications are MMM. This feature helps
to obtain simple structure.

(2) Except for the last step, the maximum length of an output of each MMM used in Algorithm 4
is not greater than that of each of the inputs to the MMM. Thus, the output can be directly
fed into the next MMM without compensation like Fig.1, which is to obtain ABR™' mod N from
Montwy,g{ A, B) and often used in conventional algorithms. This feature greatly simplifies the control
structure.
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(2) For implementation by systolic-airay, feature (2) can be effectively used to avoid idle processing
elements. If such compensations are required, any bit of the input to a systolic-array for MMM
cannot been fed before getting all the bits of the previous value of the output from the MMM,
However such a loss does not emerge in Algorithm 4 since the previous output can be directly input
to the next MMM without delay.

In contrast, any of the previously known methods for modular exponentiation using MMM (see [3][4]5])
does not simultaneously satisfy the above features.

3 Systolic-Arrays for Montgomery’s Modular Multiplication

In the following we propose systolic arrays for computing Monty (A, B) under the condition that N is
odd, n = {log, V| 4+ 1, n41<SI<r—1,0<A<2.0< B <2, andR=2".
We express A in radix ¥ = 2" and 3, N and Tg = Monty (A, B) inradix X = 2¢ as follows,

A = AL-_.I N Yk—l +Ak_.2 . Yk_z e +A| Y +Ao
B =Bn X" 4Bpg-X™7 4-- 408,-X 4B
N o =N Xm0 4 Nag- X™0 4o #N0 X 4N
Tr =Ty Xm0 4Tnp- X" 4o 470X 4T

where A; € {0,1}* (i =0,---,k -1}, and B;, N; and T; € {0,1}4 (j =0,---,m — 1), and v S d.
Tr = Monty r(A, B) can be calculated by the consecutive execution of the following operation from

i=0toi=#f )
T =(TE-1)+A -B-Y+M_-N/Y (2)
where My = (T(i—=1)mod Y). Njmod Y,
T{-1)=0, Ng=N'mod Y
3.1 Array-B

Expression (2) can be realized by the processing element (PE) described in Fig.2, when B and N are
synchranously fed into the port [Bi,, Ni,] of the PE as [By, NoJ. 1By, Ny} [B2, Nal. .. [Bm-1 Nl
The multiplication of ¥ = 2° is realized by the v-bit shift. For example, A;- B; - Y is obtained by shifting
the value A; - B; v bits into the direction of more significant bits.

if v =1 the PE in Fig.2 can be easily realized as follows. Each of the multipliers M1 and M2 is
constructed with only d AND gates. Each of the registers R1 and R2 is a 1-bit register respectively
holding A; and M;_,. Since N} = 1, register R3 and multiplier M3 can be omitted, so that M.y can
be the least significant bit of the output from adder AL, R4 and R5 are d-bit registers which respectively
transfers 5, and NV, to the next PE with a delay of one clock cycle. AL is a 5-input adder whose output
is received by register R6 of d + 3 bits. The most and the second significant bits of R6 are fed back to
adder Al as carry bits. The least significant bit of R6 is fed into terminal [.2,, of the next PE but one to
this PE. The rest of the bits of R6 are transferred to the terminal T}, of the next PE.

To obtain T we construct Array-B shown in Fig.4 which consists of k + 1 tandem PEs described in
Fig.2 for the repetition of Expression (2) and of the last and the last second PEs described in Fig.3. The
k + 1 PEs described as Fig.2 are connected in tandem by respectively tying terminals Boui. L2outs Touts
L1,us, Mows, Now to the corresponding terminals Bin, L2in, Tin, Llin, Mia, Nin of the next PE. And for
i=0,1,...,k — 1, register R1 of the i-th PE in Fig.2 is preset by value A;. Values of Llins Tins L2in
and A, of the first PE are set to 0.

3.2 Array-C

Tr can be also evaluated by systolic-array Array-C described in Fig.6. For the sake of simplicity we assume
in this section that k =m, i.e, v=d.
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Asray-C consists of m copies of the same PE shown in Fig.5. Each PE is connected in tandem by
respectively tying terminals Aur. Bontr Touss Mowt, Noy 1o the corresponding terminals A, Bin, Tin,
My, Nin of the next PE. Values for T;, and A, in the first PE are set to 0.

The multiplication by Y is realized by timing shift. In Array-C A; is input one-clock-cycle prior to B,
for i, = 0,1,...,m ~ 1. Therefore we can set register R1 in PE# O the value of Ay before computing
Ao+ B;. At each PE A, delays one clock cycle while [3; delays two clock cycle. Thus if A, can be set
in PE# i before computing A, - B, (j = 0,1,...,m —~ 1) then Ay, can be set in PE# i+ | before
computing A,y - Bioy (F = 0,1,...,m —1). Therefore values of A; can be input serially like as B; and
N;. That is, we do not have to preset the values of A;.

if v =d = I, the PE in Fig.5 can be readily realized as follows. Each of multipliers M1 and M2 is
constructed with anly one AND gate, and multiplier M3 can be omitted. Fach of registers R1 ~ R8s a
1-bit register and register R3 can be also omitted. Al is a 4-input adder and R9 is a 3-bit register, and
the least significant bit of R9 is fed into the terminal T, of the next PE and the rest of the bits of R9 is
fed back to adder Al as carry bits.

4 Conclusion

Since Array-A, Array-B, and Array-C is respectively constructed with 3 types of PE, 2 types of PE, and 1
type of PE, Array-C is simpler than Array-B, which is simpler than Array-A,

For modular reduction, Array-A uses ROM tables while Array-B and Array-C use multipliers, which can
be constructed with only AND gates and can be implemented faster than ROMs. Thus the circuit scale
and the processing time of Array-B and Array-C are less than those of Array-A. While the size of operands
acceptable by Array-A is bounded by the available ROM size, that of Array-B and that of Array-C have no
such severe restriction. Therefore Array-B and Array-C can flexibly cope with changing sizes of operands.

And since Array-B contains less number of registers than Array-C, the former is more efficient than
the latter which is more efficient than Array-A.

In conclusion Array-B and Array-C are more useful than Array-A when we realize efficient and flexible
implementations for modular exponentiation,
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Fig.1: Compensation for MMM
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Fig.5: The PE used in Array-C
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