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Abstract - This paper proposes two ideas for modular exponentiation using Montgomery method. (1) A 
novel algorithm for modular exponentiation without operation of subtracting N for evety Montgomery's 
modular multiplication (MMM). (2 )  Two types of systolic-array for MMM which can realize more efficient 
and flexible chip implementation than the array in [I]. 

1 Introduction 

We have proposed a systolic-array for modular multiplication [l], which we will refer to as Array-A in the 
following. Array-A is practical for modular exponentiation and is very suitable for chip implementation. 
However Array-A does not achieve the ultimate efficiency in the wide range of processing speed, when the 
efficiency is defined as (processing speed)/(circuit scale). In this paper, we propose a novel algorithm for 
modular exponentiation uJng simple repetition o f  Montgomery's modular multiplication (MMM) 121 in 
Section 2, and in Section 3 we propose the structures and actions of m e  dficient systolic-arrays (Array- 
B, Array-C) suitable for MMM in the wide range of processing speed than Array-A. Combining these 
proposals, we have eflicient and fast hardware algorithms for modular exponentiation. In Section 4, we 
show that compared with the use o f  Array-A the use of Array-B and that of Array-C respectively achieves 
more efficient high-speed processing and more flexible implementation for modular exponentiation. 

2 

Definition 1 

A Novel Algorithm for Modular Exponentiation 

For integers iV, R. A ,  and B, let hhntN*R(A,B)  denote the rational number 

hIontNa(A, B )  = A -  B + ( ( A . L ? . ( - N - ' r n o d  R ) ) m o d R ) . N  
R 

We have the following fact due to Montgomery (21. 
Proposition 2 
an integer such that 

For relatively prime integers N and R, and for integers A and B, MontNp(A,B) is 

MontNa(A, 8) ABR-' mod N (d N ) .  

We call MontNp(A, B )  the Montgomery's Modular Multiplication (MMM). 
The condition that the maximum number o f  bits in A, in 13 and in MontN,R(A,B) are the same is 

described as follows: 
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Theorem 3 l e t  N ,  R, A, D, ti, r. and I be integers and assume 

O < N < 2 " ,  O i R - ; 2 ' ,  and g c d ( N , R ) = l .  

The necessary and sufficient condition for tha t  

0 5 A < Z', 0 5 13 < Z', and 0 5 MontN.R( A, B )  < 2' 

IS 

n + l < l < r - l .  (1) 

(Proof) Let 0 _< A < 2' and 0 <_ B < 2'. Since it i s  straightforward that 

0 _< Mont,v ,R(A,B) < r n a ~ ( 2 ~ ' - ~ ~ ' , 2 ~ + ~ }  

the necessary and sufficient condition for 

0 < h'font~,n(n, 0) < 2' 

is that 

which is equivalent t o  

which is equivalent to (1). 

Thus we let n + 1 5 l 5 r - 1 M that the output of MMM can be directly used as the next input 
to MMM. The smallest possible value of I is I = n + 1 and of r is r = n + 2. Using this condition and 
introducing fir, = I?* niod N ,  we propose the following algorithm which evaluates modular exponentiation 
C = hI' rnod N wlth repeated M M M s  and a final modular reduction modN. 

Algorithm 4 

rnax{2~~-'+1,2n+') 5 2' 

22l-r+l 2' and 2n+I < 21 - - 

(Input: M , e  = (ek,...,el)l,N,R,Rn = R2 mod N )  
(Output : C = M' rnod N )  

Icf~ = MontN,n( A f .  RR)  
CR = Montwdl ,  f in) 
FOR i = k  TO 1 

IF ej = I THEN CR = MontN,R(Cn,Mn) 
IF i > 1 THEN CR = Monthr,R(GR,CR) 

NEXT 
cn = Mo[llAf,n(l,Cn) 
C = CR mod N 

Algorithm 4 has the following useful features: 

(1) Algorithm 4 employs ordinary modular multiplication only at the precomputation of RR which can 
be done independently with M. All the rest  of modular multiplications are MMM. This feature helps 
to obtain simple structure. 

Except for the last step, the maximum length of an output o f  each MMM used in Algorithm 4 
is not greater than that of each of the inputs to the MMM. Thus, the output can be directly 
fed into the next MMM without compensation like Fig.1. which is to obtain ABR-' mod N from 
Mont/v,R(A, B )  and often used in conventional algorithms. This feature greatly simplifies the control 
structure. 

(2) 
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(2') For implementation by systolic-array, feature (2) can be effectively used to  avoid idle procersing 
elements. If such compensations are required, any bit of the input to  a systolic-array for M M M  
cannot been fed before getting a l l  the bits of the previous value of the output from the MMM. 
However such a loss does not emerge in Algorithm 4 since the previous output can be directly input 
to the next MMM without delay. 

In contrast, any of the previously known methods for modular exponentiation using MMM (see [31[4][5]) 
does not simultaneously satisfy the above features. 

3 

In the following we propose systolic arrays for computing MontN,R(A,O) under the condition tha t  N is 
odd. n = [log2N1 4- 1, n +  1 

Systolic-Arrays for Montgomery's Modular Multiplication 

I <  r -  1 ,  0 5 A < 2'. 0 5 D <2', and a=  2'. 
We express A in radix Y = 2" and U,  N and TR = MontN,n(A, U) in radix X = zd as follows. 

A = Ak-1  . Yk-' +Ak-?.  l''-' + ... +A,  I ).' +Ao 
13 = B,,,-,-l.x'"-' i- B,-z ' X"-' + - . -  +O' .X '  +Bo 
N = Nm-'.Xm-~ + I V ~ - . ~ . . Y " ' - ~  +-.. +Wg,A' +No 
TR = T,-, .A'"-' +T,,,-z. X"-" -t * . *  +Ti 4 . Y  +TO 

w h e r e A i E { O , 1 } " ( i = O , . . . , k - l ) , a n d  Bj, N j a n d T , ~  { O , 1 J d ( j = O , . ~ ~ , m - 1 ) . a n d u < d .  

i = 0 t o  i = k .  
'I'R = Montrv.R(A,B) can be calculated by the consecutive execution of the following operation from 

= (T(i - 1) + A , .  B .  Y + hf;-, . N ) / Y  (2) 

T(-1) = 0, Nh = A" mod Y 

T(i)  
where = (T(i - I )  mod V )  . IVA mod Y, 

3.1 Array-B 

Expression (2) can be realized by the processing element (PE) described in Fig.2, when B and PI' are 
synchronously fed into the port [Bin, N;,] of the PE as I&,  No]. 10, I N , ] ,  14. A'*]. , [ & - I ,  N m - 1 1 .  
The multiplication of Y = 2" is realized by the u-bit shift. For example, A; Sj * Y is obtained by shifting 
the value A; * Bj u bits into the direction of more significant bits. 

If v = 1 the PE in Fig.2 can be easily realized as follows. Each of the multipliers M1 and M2 is 
constructed with only d AND gates. Each of the  registers R1 and R2 is a 1-bit register raptctrvely 
holding Ai and Mi-l. Since Ni = 1 ,  register R3 and multiplier M3 can be omitted, 50 tha t  A f 4  can 
be the least significant bit of the output from adder A l .  R4 and R5 are $-bit registers which respectively 
transfers Bj and N j  to the next PE with a delay of one clock cycle. A 1  i s  a 5-input adder whose output 
is received by register R6 of d + 3 bits. The most and the second signifitant bits of R6 are fed back to 
adder A 1  as carry bits. I he least significant bit of R6 is fed into terminal L2,, of the next PE but one to 
this PE. The rest of the bits of R6 are transferred to the terminal qn of  the next PE. 

To obtain Tn we construct Array-B shown i n  Fig.4 which consists of k -f I tandem PEs described in 
Fig.2 for the repetition of Expression (2) and of the last and the last second PEs described in Fig.3. The 
k + 1 PEs described as Fig.2 are connected in tandem by respectively tying terminals Bow,, L2,.,, T-1, 
Ll,,, N,, t o  the corresponding terminals D,,,, LZ,,. 'I:,,. Ll , , ,  M,m, N,, of the next PE. And for 
i = O,l,.. . , k  - 1, register R 1  of the i-th PE in Fig.2 is preset by value A;. Values of Ll i" ,  Kn, L2,. 
and Af;, of the first PE are set to 0. 

3.2 Array-C 

TR can be also evaluated by systolic-array Array-C deKribed in Fig.6. For the sake of simplidty wc assume 
in this section that k = m, i.e., u = d .  



Array-C consists of rn copies of the same PE shown in Fig 5. Each PE is connected 4n tandem by 
respectrvdy tying terminals /lonl. O,,,,, To.,, A[,,,, iv,,,, to the correspondlog terminals A,”, B,,, T,,, 
ill,,, N,, of the next PE. Valuu for T,, and M,,, in the first PE are set t o  0. 

The muftipliution by Y is realized by timing shift. In Array-C A, is input one-dock-cycle ptwr to D, 
for z , j  = 0,1,. . . ,in - 1. Therefore we can set register R1 in PE# 0 the value of & before computing 
& 3 0,. At  each PE A, delays one clock cycle while 0, delays two dock cycle Thus if A, can be r t  
in PER i before computing A, 0, (1 = 0,1, , ,ni - 1) then A,,, can be set i n  PE# I + 1 before 
computing A,+, . B j+ i  (1 = O , l , .  . . , m  - 1). Therefore values of A, can be input senally like as B, and 
N, .  That is. we do not have to preset the values of A, 

If v = d = 1 .  the PE in Fig.5 can be readily realmd as follows. Each o f  multipl~ers M 1  and M2 is 
constructed with only one AND gate. and multiplier M3 can be omitted Fach of registers R1 N R8 IS a 
1-bit register and register R3 can be also omitted A 1  IS a 4-input adder and R9 is a 3-bit register, and 
the least ugnifrcant bit of R9 is  fed into the terminal T,,, of the next PE and the rest of the bits of R9 IS 
fed back to adder A1 as carry bits 

4 Conclusion 

Since A r r a y 4  Array-B. and Array-C is respectively constructed with 3 types of PE, 2 types of PE. and 1 
type of PE. Array-C is simpler than Array-B. which is simpler than Array-A. 

For modular reduction. Array-A uses ROM tables while Array-8 and Array-C u x  multipliers. which can 
be constructed with only AND gates and can be implemented faster than ROMs Thus the circuit scale 
and the processing time of Array-B and Array-C are less than those of Array-A. While the wze of operands 
acceptable by Array-A IS bounded by the available ROM size, that of Array-B and that of Array-C have no 
such severe restriction. Therefore Array-B and Array-C can flexibly cope with changing sizes of operands 

And since Array-8 contains less number of registers than ArrayC. the  former 4s more efficient than 
the latter which is more efficient than Array-A. 

In conclusion Array-B and Array-C are more useful than Array-A when we realize efficient and flexible 
implementatlons for modular exponentiation 
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