Skip to main content

Reducing Certain Elliptic Curve Discrete Logarithms to Logarithms in a Finite Field

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2119))

Included in the following conference series:

Abstract

We construct a variant of Weil pairing to reduce the elliptic curve discrete logarithm problem to the discrete logarithm problem in the multiplicative subgroup of a finite field. We propose an explicit reduction algorithm using a new pairing and apply the algorithm to the case of two trace elliptic curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Balasubramanian and N. Koblitz, Improbability that an elliptic curve has subexponential discrete logarithm problem under the Menezes-Okamoto-Vanstone algorithm, Journal of cryptology, vol. 2, no. 11 (1998), pp. 141–145.

    Article  MathSciNet  Google Scholar 

  2. G. Frey and H. G. Rück, A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves, Mathematics of Computation, vol. 62 (1994), pp. 865–874.

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Kanayama, T. Kobayashi, T. Satoh and S. Uchiyama, Remarks on elliptic curve discrete logarithm problem, IEICE Transaction Fundamentals, vol. E83-A, no. 1 (2000), pp. 17–23.

    Google Scholar 

  4. N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation, vol. 48 (1987), pp. 203–209.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Lang, Abelian varieties, Springer Verlag, New York, 1983.

    MATH  Google Scholar 

  6. A. J. Menezes, T. Okamoto and S. A. Vanstone, Reducing elliptic curve logarithms in a finite field, IEEE Transaction on Information Theory, vol. 39, no. 5 (1993), pp. 1639–1646.

    Article  MATH  MathSciNet  Google Scholar 

  7. V. Miller, Use of elliptic curves in cryptography, Advances in cryptology; Proceedings of Crypto’85, LNCS, 218 (1986), Springer-Verlag.

    Google Scholar 

  8. T. Satoh, K. Araki, Fermat quotients and the polynomial time discrete logarithm algorithm for anomalous elliptic curves, Proc. of algebraic number theory and its related topics, Koukyuuroku vol. 1026 (1998), pp. 139–150.

    Google Scholar 

  9. J. A. Semaev, Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curves in characteristic p, Mathematics of Computation, vol. 67 (1998), pp. 353–356.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. H. Silverman, The arithmetic of elliptic curves, Springer-Verlag, 1986.

    Google Scholar 

  11. N. P. Smart, The discrete logarithm problem on elliptic curves of trace one, Journal of Cryptology, vol. 12 (1999), pp. 193–196.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shim, K. (2001). Reducing Certain Elliptic Curve Discrete Logarithms to Logarithms in a Finite Field. In: Varadharajan, V., Mu, Y. (eds) Information Security and Privacy. ACISP 2001. Lecture Notes in Computer Science, vol 2119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47719-5_40

Download citation

  • DOI: https://doi.org/10.1007/3-540-47719-5_40

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42300-3

  • Online ISBN: 978-3-540-47719-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics