Skip to main content

Compressing Multiresolution Triangle Meshes

  • Conference paper
  • First Online:
Advances in Spatial and Temporal Databases (SSTD 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2121))

Included in the following conference series:

Abstract

In this paper, we consider triangle-based two-dimensional multiresolution complexes, called Multi-Triangulations (MTs), constructed based on a vertex-removal simplification strategy, which is the most common strategy used to build simplified representations of surfaces, e.g., terrains. We describe and compare compact encoding structures for such MTs. We show that these structures provide good compression ratios not only with respect to an economical data structure for general MTs, but also with respect to encoding the original mesh (i.e., the mesh at the full resolution). We also analyze the basic atomic operations needed for performing selective refinement on an MT, and we show that such operations are efficiently supported by the data structures described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Andujar and L. De Floriani. Optimal encoding of triangulated polygons. Technical Report DISI-TR-01-06, Department of Computer and Information Science, University of Genova (Italy), 2001.

    Google Scholar 

  2. A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno. Multiresolution decimation based on global error. The Visual Computer, 13(5):228–246, 1997.

    Article  Google Scholar 

  3. D. Cohen-Or, D. Levin, and O. Remez. Progressive compression of arbitrary triangular meshes. In Proceedings IEEE Visualization’ 99, pages 67–72, 1999.

    Google Scholar 

  4. L. De Floriani, P. Magillo, and E. Puppo. Building and traversing a surface at variable resolution. In Proceedings IEEE Visualization 97, pages 103–110, Phoenix, AZ (USA), October 1997.

    Google Scholar 

  5. L. De Floriani, P. Magillo, and E. Puppo. Efficient implementation of multi-triangulations. In Proceedings IEEE Visualization 98, pages 43–50, Research Triangle Park, NC (USA), October 1998.

    Google Scholar 

  6. L. De Floriani, P. Magillo, and E. Puppo. Data structures for simplicial multi-complexes. In Guting, Papadias, and Lochovsky, editors, Advances in Spatial Databases, volume 1651 of Lecture Notes in Computer Science, pages 33–51. Springer Verlag, 1999.

    Chapter  Google Scholar 

  7. L. De Floriani, P. Magillo, and E. Puppo. Compressing triangulated irregular networks. Geoinformatica, 4(1):67–88, 2000.

    Article  MATH  Google Scholar 

  8. M. Duchaineau, M. Wolinsky, D.E. Sigeti, M.C. Miller, C. Aldrich, and M.B. Mineed-Weinstein. ROAMing terrain: Real-time optimally adapting meshes. In Proceedings IEEE Visualization’97, pages 81–88, 1997.

    Google Scholar 

  9. J. El-Sana and A. Varshney. Generalized view-dependent simplification. Computer Graphics Forum, 18(3):C83–C94, 1999.

    Article  Google Scholar 

  10. W. Evans, D. Kirkpatrick, and G. Townsend. Right triangular irregular networks. Technical Report 97-09, University of Arizona, May 1997. Algorithmica, 2001, to appear.

    Google Scholar 

  11. M. Garland. Multiresolution modeling: Survey & future opportunities. In Eurographics’99-State of the Art Reports, pages 111–131, 1999.

    Google Scholar 

  12. M. Garland and P.S. Heckbert. Simplifying surfaces with color and normals with quadric error metrics. In Proceedings IEEE Visualization’98, pages 263–269, Research Triangle Park, NC, 1998.

    Google Scholar 

  13. S. Gumhold. Compression of discrete multiresolution models. Technical Report WSI-1998-1, WSI/GRIS, University of Tübingen, January 1998.

    Google Scholar 

  14. S. Gumhold and W. Straßer. Real time compression of triangle mesh connectivity. In ACM Computer Graphics Proceedings, (SIGGRAPH’ 98), pages 133–140, July 1998.

    Google Scholar 

  15. H. Hoppe. View-dependent refinement of progressive meshes. In ACM Computer Graphics Proceedings, Annual Conference Series, (SIGGRAPH’ 97), pages 189–198, 1997.

    Google Scholar 

  16. R. Klein and S. Gumhold. Data compression of multiresolution surfaces. In Visualization in Scientific Computing’98, pages 13–24. Springer-Verlag, 1998.

    Google Scholar 

  17. P. Lindstrom, D. Koller, W. Ribarsky, L.F. Hodges, N. Faust, and G.A. Turner. Real-time, continuous level of detail rendering of height fields. In ACM Computer Graphics (SIGGRAPH’ 96 Proceedings), pages 109–118, New Orleans, LA, USA, Aug. 6–8 1996. ACM Press.

    Google Scholar 

  18. D. Luebke and C. Erikson. View-dependent simplification of arbitrary polygonal environments. In ACM Computer Graphics Proceedings, Annual Conference Series, (SIGGRAPH’ 97), pages 199–207, 1997.

    Google Scholar 

  19. P. Magillo. The MT (Multi-Tesselation) package. Dept. of Computer and Informations Sciences, University of Genova, Italy, http://www.dis_i.unige.it/person/MagilloP/MT/index.html, January 2000.

    Google Scholar 

  20. R. Pajarola and J. Rossignac. Compressed progressive meshes. Technical Report GIT-GUV-99-05, Georgia Institute of Technology, 1999.

    Google Scholar 

  21. F.P. Preparata and M.I. Shamos. Computational Geometry-An Introduction. Springer-Verlag, 1985.

    Google Scholar 

  22. E. Puppo. Variable resolution terrain surfaces. In Proceedings Eight Canadian Conference on Computational Geometry, pages 202–210, Ottawa, Canada, August 12-15 1996.

    Google Scholar 

  23. J. Rossignac. Edgebreaker: Connectivity compression for triangle meshes. IEEE Transactions on Visualization and Computer Graphics, 5(1), 1999.

    Google Scholar 

  24. J. Rossignac and A. Szymczak. Wrap & zip: Linear decoding of planar triangle graphs. Computational Geometry: Theory and Applications, 14:119–135, 1999.

    MATH  MathSciNet  Google Scholar 

  25. W.J. Schroeder, J.A. Zarge, and W.E. Lorensen. Decimation of triangle meshes. In Edwin E. Catmull, editor, ACM Computer Graphics (SIGGRAPH’ 92 Proceedings), volume 26, pages 65–70, July 1992.

    Google Scholar 

  26. G. Taubin. 3D geometry compression and progressive transmission. In Eurographics’99-State of the Art Reports, pages 81–96, 1999.

    Google Scholar 

  27. G. Taubin, A. Guéziec, W. Horn, and F. Lazarus. Progressive forest split compression. In Computer Graphics (SIGGRAPH’ 98 Proceedings), pages 123–132. ACM Press, 1998.

    Google Scholar 

  28. G. Taubin and J. Rossignac. Geometric compression through topological surgery. ACM Transactions on Graphics, 17(2):84–115, 1998.

    Article  Google Scholar 

  29. C. Touma and C. Gotsman. Triangle mesh compression. In Proceedings Graphics Interface’98, pages 26–34, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Danovaro, E., De Floriani, L., Magillo, P., Puppo, E. (2001). Compressing Multiresolution Triangle Meshes. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds) Advances in Spatial and Temporal Databases. SSTD 2001. Lecture Notes in Computer Science, vol 2121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47724-1_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-47724-1_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42301-0

  • Online ISBN: 978-3-540-47724-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics