Skip to main content

Construction of Data Dependent Chaotic Permutation Hashes to Ensure Communications Integrity

  • Conference paper
Networking — ICN 2001 (ICN 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2094))

Included in the following conference series:

  • 448 Accesses

Abstract

Cryptographic hash functions and message digests are essential in secure communications because they aid in detecting incidental transmission errors caused by unreliable equipment and noisy environments, but also ensure message integrity in presence ofin truders deliberately mounting cryptanalytic attacks.

It is the purpose ofthis contribution to introduce a novel approach for generating cryptographic hashes computed from input data dependent pseudo-random permutations. Essentially, input messages are processed sequentially using bytes ofinput data as keys to discrete chaotic Kolmogorov systems which permute an initial message digest in a cryptographically strong manner heavily depending on the input stream. As will be shown this principle can lead to very efficient and strong message digests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Arnold and A. Avez. Ergodic Problems of Classical Mechanics. W.A. Benjamin, New York, 1968.

    Google Scholar 

  2. Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems. In Advances in Cryptology-CRYPTO’90 Proceedings, pages 2–21. Springer Verlag, 1991.

    Google Scholar 

  3. W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory, 22(6):644–654, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Goldstein, B. Misra, and M. Courbage. On intrinsic randomness of dynamical systems. Journal of Statistical Physics, 25(1):111–126, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  5. Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryptology-Eurocrypt’93 Proceedings, pages 386–397. Springer Verlag, 1993.

    Google Scholar 

  6. Jürgen Moser. Stable and Random Motions in Dynamical Systems. Princeton University Press, Princeton, 1973.

    MATH  Google Scholar 

  7. US Department of Commerce/NIST. Secure hash standard. FIPS PUB 180–1, April 1995.

    Google Scholar 

  8. National Institute of Standards and Technology. Digital signature standard. U. S. Department of Commerce, 1994.

    Google Scholar 

  9. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipies in C: The Art of Scientific Computing. Cambridge University Press, 1988.

    Google Scholar 

  10. RACE (Research and Development in Advanced Communication Technologies in Europe). RIPE Integrity Primitives. Final Report of RACE Integrity Primitves Evaluation, 1992.

    Google Scholar 

  11. R.L. Rivest. The MD5 message digest function. RFC 1321, 1992.

    Google Scholar 

  12. R.L. Rivest, A. Shamir, and L.M. Adleman. A method for obtaining digital signatures and public-key cryptsystems. Communications of the ACM, 21(2):120–128, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  13. Josef Scharinger. Fast encryption of image data using chaotic Kolmogorov flows. Journal of Electronic Imaging, 7(2):318–325, 1998.

    Article  Google Scholar 

  14. Bruce Schneier. Applied Cryptography. Addison-Wesley, 1996.

    Google Scholar 

  15. Paul Shields. The Theory of Bernoulli Shifts. The University of Chicago Press, Chicago, 1973.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scharinger, J. (2001). Construction of Data Dependent Chaotic Permutation Hashes to Ensure Communications Integrity. In: Networking — ICN 2001. ICN 2001. Lecture Notes in Computer Science, vol 2094. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47734-9_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-47734-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42303-4

  • Online ISBN: 978-3-540-47734-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics