Skip to main content

Geodesic Active Contours Applied to Texture Feature Space

  • Conference paper
  • First Online:
Scale-Space and Morphology in Computer Vision (Scale-Space 2001)

Part of the book series: Lecture Notes in Computer Science 2106 ((LNCS,volume 2106))

Included in the following conference series:

  • 731 Accesses

Abstract

Gabor Analysis is frequently used for texture analysis and segmentation. Once the Gaborian feature space is generated it may be interpreted in various ways for image analysis and segmentation. Image segmentation can also be obtained via the application of “snakes” or active contour mechanism, which is usually used for gray-level images. In this study we apply the active contour method to the Gaborian feature space of images and obtain a method for texture segmentation. We cal- culate six localized features based on the Gabor transform of the image. These are the mean and variance of the localized frequency,orientation and intensity. This feature space is presented, via the Beltrami frame- work, as a Riemannian manifold. The stopping term, in the geodesic snakes mechanism, is derived from the metric of the features manifold. Experimental results obtained by application of the scheme to test images are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A.C. Bovik and M. Clark and W.S. Geisler “Multichannel Texture Analysis Using Localized Spatial Filters”, IEEE Transactions on PAMI, 12(1), 1990, 55–73.

    Article  Google Scholar 

  2. P. Brodatz, Textures: A photographic album for Artists and Designers, New York, NY, Dover, 1996.

    Google Scholar 

  3. V. Caselles and R. Kimmel and G. Sapiro, “Geodesic Active Contours”, International Journal of Conputer Vision, 22(1), 1997, 61–97.

    Article  MATH  Google Scholar 

  4. J.G. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensinal visual cortical filters”, J. Opt. Soc. Amer. 2(7), 1985, 1160–1169.

    Article  Google Scholar 

  5. D. Gabor ldTheory of communication” J. IEEE, 93, 1946, 429–459.

    Google Scholar 

  6. M. Kaas, A. Witkin and D. Terzopoulos, “Snakes: Active Contour Models”, International Journal of Computer Vision, 1, 1988, 321–331.

    Article  Google Scholar 

  7. S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum and A. Yezzi, “Gradient Flows and Geometric Active Contour Models”,Proceedings ICCV’95, Boston, Massachusetts, 1995, 810–815.

    Google Scholar 

  8. R. Kimmel, R. Malladi and N. Sochen, “Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images”, International Journal of Computer Vision, 39(2), 2000, 111–129.

    Article  MATH  Google Scholar 

  9. T.S. Lee, “Image Representation using 2D Gabor-Wavelets”, IEEE Transactions on PAMI, 18(10), 1996, 959–971.

    Article  Google Scholar 

  10. L.M. Lorigo, O. Faugeras, W.E.L. Grimson, R. Keriven, R. Kikinis, “Segmentation of Bone in Clinical Knee MRI Using Texture-Based Geodesic Active Contours”, Medical Image Computing and Computer-Assisted Intervention, 1998, Cambridge, MA, USA.

    Google Scholar 

  11. B.S. Manjunath and W.Y. Ma, “Texture features browsing and retrieval of image data”, IEEE Transactions on PAMI, 18(8), 1996, 837–842.

    Article  Google Scholar 

  12. S. Marcelja, “Mathematical description of the response of simple cortical cells”, J. Opt. Soc. Amer., 70, 1980, 1297–1300.

    Article  MathSciNet  Google Scholar 

  13. N. Paragios and R. Deriche, “Geodesic Active Regions for Supervised Texture Segmentation”, Proceedings of International Conference on Computer Vision, 1999, 22–25.

    Google Scholar 

  14. M. Porat and Y.Y. Zeevi, “The generalized Gabor scheme of image representation in biological and machine vision”, IEEE Transactions on PAMI, 10(4), 1988, 452–468.

    Article  MATH  Google Scholar 

  15. M. Porat and Y.Y. Zeevi, “Localized texture processing in vision: Analysis and synthesis in the gaborian space”, IEEE Transactions on Biomedical Engineering, 36(1), 1989, 115–129.

    Article  Google Scholar 

  16. S.J. Osher and J.A. Sethian, “Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations”, J of Computational Physics, 79, 1988, 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Sapiro, “Vector Valued Active Contours”, Proc. IEEE Conference on Computer Vision and Pattern Recognition, 680–685, 1996.

    Google Scholar 

  18. Jayant Shah, “Riemannian Drums, Anisotropic Curve Evolution and Segmentation”, Proceedings of Scale-Space 1999., Eds. Nielsen, P. Johansen, O.F. Olsen, J. Weickert, Springer, 129–140.

    Google Scholar 

  19. N. Sochen, R. Kimmel and R. Malladi, “A general framework for low level vision”, IEEE Trans. on Image Processing, 7, (1998) 310–318.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Zibulski and Y.Y. Zeevi, “Analysis of multiwindow Gabor-type schemes by frame methods”, Applied and Computational Harmonic Analysis, 4, 1997, 188–221.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sagiv, C., Sochen, N.A., Zeevi, Y.Y. (2001). Geodesic Active Contours Applied to Texture Feature Space. In: Kerckhove, M. (eds) Scale-Space and Morphology in Computer Vision. Scale-Space 2001. Lecture Notes in Computer Science 2106, vol 2106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47778-0_32

Download citation

  • DOI: https://doi.org/10.1007/3-540-47778-0_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42317-1

  • Online ISBN: 978-3-540-47778-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics