
The Design of a Parallel Adaptive Multi-level
Code in Fortran 90 �

William F. Mitchell

National Institute of Standards and Technology,
Gaithersburg, MD 20899

william.mitchell@nist.gov

http://math.nist.gov/~WMitchell

Abstract. Software for the solution of partial differential equations us-
ing adaptive refinement, multi-level solvers and parallel processing is
complicated and requires careful design. This paper describes the design
of such a code, PHAML. PHAML is written in Fortran 90 and makes
extensive use of advanced Fortran 90 features, such as modules, optional
arguments and dynamic memory, to provide a clean object-oriented de-
sign with a simple user interface.

1 Overview

Software for the solution of partial differential equations (PDEs) using adaptive
refinement, multi-level solvers and parallel processing is complicated and requires
careful design. This paper describes the design of such a code, PHAML (Par-
allel Hierarchical Adaptive Multi-Level). PHAML is written in Fortran 90 and
makes extensive use of advanced Fortran 90 features, such as modules, optional
arguments and dynamic memory, to provide a clean object-oriented design with
a simple user interface.

The primary subroutine of PHAML solves a scalar, linear, second order el-
liptic PDE in two dimensions. More complicated PDE problems can be solved
by multiple calls to the primary subroutine. This includes systems of equations,
nonlinear equations, parabolic equations, etc. PHAML also provides for the so-
lution of eigenvalue problems, like the linear Schrödinger equation.

The underlying numerical methods in PHAML are those used in the popular
scalar PDE code MGGHAT [11], and are described in [9, 10]. PHAML is a finite
element program that uses newest node bisection of triangles for adaptive refine-
ment/derefinement [9] and a hierarchical multigrid algorithm [10] for solution of
the linear system. The multigrid method can be used either as a solver or as
a preconditioner for conjugate gradients [2] or stabalized bi-conjugate gradients
[2].

Several other software packages are optionally used by PHAML to increase
its capability. Operation in parallel requires the use of either MPI [5] or PVM
[4]. Visualization is provided through OpenGL [17], GLUT [6] and f90gl [12].

� Contribution of NIST. Not subject to copyright.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2331, pp. 672−680, 2002.
 Springer-Verlag Berlin Heidelberg 2002

PHAML contains one method for partitioning the grid for load balancing, but
additional methods are available through Zoltan [3]. Eigenvalue problems re-
quire the use of ARPACK [8]. Some operations use BLAS [7] and LAPACK [1];
performance may be improved by using a vendor implementation rather than
source code included with PHAML.

PHAML uses the concept of data encapsulation from object-oriented pro-
gram design. Using Fortran 90 modules with public and private attributes, the
user can only manipulate top level data types using only the functions provided
by PHAML. This not only removes the burden of knowing the details of the data
structures from the user, but it provides for the evolution of those data struc-
tures without any changes to the user code, improving upward compatibility of
revisions of PHAML.

Simplicity of the user interface is also improved by using the optional argu-
ment and dynamic memory features of Fortran 90. The argument list for the
primary subroutine is rather long, but nearly all the arguments are optional.
The user only provides the arguments for which a specific value is desired; all
other arguments assume a reasonable default value. Finally, the use of dynamic
memory (allocatable arrays) removes the burden of allocating workspace of the
correct size, which is often associated with FORTRAN 77 libraries.

PHAML can run as either a sequential or parallel program. As a parallel pro-
gram it is designed for distributed memory parallel computers, using message
passing to communicate between the processors. It uses a master/slave model
of computation with a collection of compute processes that perform most of the
work, graphics processes that provide visualization, and a master process that
coordinates the other processes. The executable programs can be configured as
three separate programs for the three types of processes, or as a single pro-
gram used by all of the processes. The single program approach is used when
all processes are launched at once from the command line, but limits some of
multiple-PDE capabilities of PHAML. In the multiple program approach, the
master process is launched from the command line and spawns the other pro-
cesses.

A simplified version of the algorithm of the primary subroutine is

initialize coarse grid

repeat

if (predictive) then load balance

refine/derefine

if (not predictive) then load balance

solve linear system

until termination criterion is met

Note there is option of performing predictive load balancing before the refinement
of the grid occurs, or load balancing the grid after refinement. The numerical
methods have been modified for parallel execution using the full domain parti-
tion approach [13–15]. This approach minimizes the frequency of communication
between the processors to just a couple messages for each instance of refinement,

673The Design of a Parallel Adaptive Multi-level Code in Fortran 90

load balancing or multigrid, which reduces the amount of time spent on commu-
nication, especially in high-latency, low-bandwidth environments like a cluster.
Load balancing is performed by partitioning the grid and redistributing the
data so that each process owns the data associated with a partition. The k-way
refinement-tree partitioning method (RTK) [16] is used by default.

2 Modules

The Fortran 90 module is fundamental to good software design in Fortran 90. A
module is a program unit that can contain variables, defined constants (a.k.a. pa-
rameters), type definitions, subroutines, and other entities. Each entity in a
module can be private to the module or public. The entities that are public are
available to any program unit that explicitly uses the module. Modules have
many uses. For example, modules can contain global data to replace the old-
style common blocks, contain interface blocks for an external library to provide
strong type checking, or group together a collection of related subroutines.

One of the most important uses of modules is to provide data encapsulation,
similar to a class in C++. The module contains one or more user defined types
(a.k.a. structures) and functions that operate on those types. The type itself is
made public, so that other program units can declare variables to be of that
type, but the internals of the type are declared private, so that nothing outside
the module can operate on the individual components of the type. For example

public hash_key

type hash_key

private

integer :: key

end type hash_key

Some of the functions in the module are made public to provide the means of
operating on variables of the public type.

PHAML is organized into several modules, each of which contains either the
structures and operations for some aspect of a parallel adaptive multi-level code,
or global entities. The primary modules are:

phaml: This is the only module used directly by the user’s code. It makes
public the entities that the user needs, and contains all the functions that are
directly callable by the user.

linear system: This contains all data structures and operations related to
creating and solving the linear system.

grid: This contains all operations on the grid, including refinement and re-
distribution.

grid type: This contains the grid data type. It is separate from module grid
because other modules also need access to this structure. For example, module
linear system needs to use the grid to create the linear system.

load balance: This contains subroutines for partitioning the grid.

674 W.F. Mitchell

message passing: This contains subroutines for communication between pro-
cesses. It acts as an interface between a message passing library and the rest of
the PHAML code.

hash: This contains operations on a hash table, which translates global IDs
(known to all processes) to local IDs (known only to one process).

global: This contains global data which can be used by any program unit.

3 Data Structures

PHAML defines many data structures, most of which are private to a module
or have private internals. A complete description of even the main structures is
beyond the scope of this paper, and would be fruitless since they continue to
evolve as the capabilities of PHAML expand. This section illustrates the flavor
of the data structures through a snapshot of the current state of a few of them.

The only data type available to the user is phaml solution type, defined as

type phaml_solution_type

private

type(grids_type) :: grids

type(proc_info) :: procs

integer :: outunit, errunit, pde_id

character(len=HOSTLEN) :: graphics_host

logical :: i_draw_grid, master_draws_grid, &

i_draw_reftree, master_draws_reftree, &

still_sequential

end type phaml_solution_type

This structure contains all the information that one processor knows about
the computed solution, grid and processor configuration for a PDE. See Sect.
4 for the operations that can be performed on a variable of this type. The
first component contains the grid information. type(grids type) contains the
grid(s) corresponding to one or more partitions of the global grid. It allows
for more than one partition to be assigned to a processor for possible future
expansion to shared memory parallelism and/or cache-aware implementations.
type(proc info) contains information about the processor configuration for
message passing. It is defined in module message passing with private inter-
nals, and it’s components depend on the message passing library in use. For
example, the PVM version contains, among other things, the PVM task ids,
while the MPI version contains the MPI communicators.

A slightly reduced version of the grid data type is

type grid_type

type(element_type), pointer :: element(:)

type(node_type), pointer :: node(:)

type(hash_table) :: elem_hash, node_hash

integer :: next_free_elem, next_free_node

675The Design of a Parallel Adaptive Multi-level Code in Fortran 90

integer, pointer :: head_level_elem(:), head_level_node(:)

integer :: partition

integer :: nelem, nelem_leaf, nelem_leaf_own, nnode, &

nnode_own, nlev

end type grid_type

The first two components are arrays containing the data for each element and
node of the grid. These are allocatable arrays (the pointer attribute is used
because Fortran 90 does not have allocatable structure components, but does
allow a pointer to an array to be allocated), which allows them to grow as the
grid is refined. The next two components are the hash tables, which are used for
converting global IDs to local IDs. A global ID is a unique identifier for every
element and node that may be created through refinement of the initial grid,
and is computable by every processor. Global IDs are used for communication
about grid entities between processors. The local ID is the index into the array
for the element or node component. The next four components provide linked
lists to pass through the elements or nodes of each refinement level. partition
indicates which partition of the global grid is contained in this variable. Finally,
the remaining scalars indicate the size of the grid and how much of it is owned
by this partition.

Examining one level further, the data type for a node is given by

type node_type

type(hash_key) :: gid

type(point) :: coord

real :: solution

integer :: type, assoc_elem, next, previous

end type node_type

4 User Interface

The user interface to PHAML consists of two parts: 1) external subroutines
written by the user to define the PDE problem, and 2) the PHAML subroutines
that operate on a phaml solution type variable to solve the PDE problem.

The user must provide two external subroutines, pdecoef and bcond, to de-
fine the differential equation and boundary conditions, respectively. For problems
involving the solution of more than one PDE, multiple interdependent PDEs can
be defined in these subroutines, using the global variable my pde id to determine
which one should be evaluated. An example of subroutine pdecoef is

subroutine pdecoef(x,y,p,q,r,f)

! pde is

! -(p(x,y)*u) -(q(x,y)*u) +r(x,y)*u = f(x,y)

! x x y y

676 W.F. Mitchell

real, intent(in) :: x(:),y(:)

real, intent(out), optional :: p(:),q(:),r(:),f(:)

if (present(p)) p = 1.0

if (present(q)) q = 1.0

if (present(r)) r = 0.0

if (present(f)) f = x**2 + y**2

end subroutine pdecoef

Note that the arguments are arrays. This allows PHAML to call the subroutine
with many quadrature points to reduce the overhead of calling it many times
with one point. But, with Fortran 90’s array syntax, in most cases the assignment
can be done as a whole array assignment and look the same as the corresponding
code for scalars. Also, the return arguments are optional, so the user must check
for their existence with the intrinsic subroutine present. This allows PHAML
to avoid unnecessary computation of coefficients that it does not intend to use
at that time.

The user must also provide a subroutine to define the initial grid, which also
defines the polygonal domain. At the time of this writing, an example is provided
for rectangular domains, but it is difficult for a user to write the subroutine for
more complicated domains. It is hoped that in the future PHAML will interface
to a public domain grid generation code to define the initial grid.

Optionally, the user may also provide a subroutine with the true solution of
the differential equation, if known, for computing norms of the error.

The user provides a main program for the master process. This program uses
module phaml, and calls the public PHAML subroutines to perform the desired
operations. The simplest program is

program user_main_example

use phaml

type(phaml_solution_type) :: pde

call create(pde)

call solve_pde(pde)

call destroy(pde)

end program

At the time of this writing there are nine public subroutines in module phaml.
It is not the purpose of this paper to be a user’s guide, so only a brief description
of the function of the routines is given, except for the primary subroutine where
some of the arguments are discussed.

create, destroy: These two subroutines are similar to a constructor and
destructor in C++. Any variable of type phaml solution type must be passed
to create before any other subroutine. Subroutine create allocates memory,
initializes components, and spawns the slave and graphics processes. Subroutine
destroy should be called to free memory and terminate spawned processes.

solve pde: This is the primary subroutine, discussed below.

677The Design of a Parallel Adaptive Multi-level Code in Fortran 90

evaluate: This subroutine is used to evaluate the computed solution at a
given array of points.

connect: With multiple PDEs, each one has its own collection of slave pro-
cesses (see Sect. 5). For interdependent PDEs, these processes must be able to
communicate with each other. This subroutine informs two phaml solution type

variables about each other, and how to communicate with each other.
store, restore: These routines provide the capability of saving all the data

in a phaml solution type variable to disk, and restoring it from disk at a later
time.

popen, pclose: These routines provide parallel open and close statements,
so that each process opens an I/O unit with a unique, but similarly named,
file. This is used for the files in store and restore, and the output unit and
error unit arguments to subroutine create.

Subroutine solve pde is the primary public subroutine of PHAML. All the
work of grid refinement and equation solution occurs under this subroutine.
At the time of this writing it has 43 arguments to provide flexibility in the
numerical methods and amount of printed and graphical output. All of these
arguments are optional with reasonable default values, so the calling sequence
need not be more complicated than necessary. Usually a user would provide them
as keyword arguments (the name of the argument is given along with the value),
which improves readability of the user’s code. For example

call solve_pde(pde, &

max_node = 20000, &

draw_grid_when = PHASES, &

partition_method = ZOLTAN_RCB, &

mg_cycles = 2)

For many of the arguments, the acceptable values are given by defined constants
(for example, PHASES and ZOLTAN RCB above) which are public entities in module
phaml.

Some of the arguments to solve pde are:
max elem, max node, max lev, max refsolveloop: These are used as ter-

mination criterion.
init form: This indicates how much initialization to do. NEW GRID starts

from the coarse grid, USE AS IS starts the refinement from an existing grid from
a previous call, and SOLVE ONLY does not change the grid, it just solves the PDE
on the existing grid from a previous call.

print grid when, print grid who: These determine how often summary
information about the grid should be printed, and whether it should be printed
by the MASTER, SLAVES or EVERYONE. There are also similar arguments for print-
ing of the error (if the true solution is known), time used, and header and trailer
information.

uniform, overlap, sequential node, inc factor, error estimator, refterm,
derefine: These arguments control the adaptive refinement algorithm.

partition method, predictive: These arguments control the load balanc-
ing algorithm.

678 W.F. Mitchell

solver, preconditioner,mg cycles, mg prerelax, mg postrelax, iterations:
These arguments control the linear system solver algorithm.

5 Parallelism

PHAML uses a master/slave model of parallel computation on distributed mem-
ory parallel computers or clusters of workstations/PCs. The user works only with
the master process, which spawns the slave processes. PHAML also provides for
sequential execution and for spawnless parallel execution, but this section as-
sumes the spawning form of the program.

The parallelism in PHAML is hidden from the user. One conceptualization
is that the computational processes are part of a phaml solution type object,
and hidden like all the other data in the object. In fact, one of the components
of the phaml solution type structure is a structure that contains information
about the parallel processes. The user works only with the master process. When
the master process calls subroutine create to initialize a phaml solution type

variable, the slave processes are spawned and the procs component of the
phaml solution type variable is initialized with whatever information is re-
quired for the processes to communicate. If another phaml solution type vari-
able is initialized, a different set of slave processes are spawned to work on this
one. When the master process calls any of the other public subroutines in mod-
ule phaml, it sends a message to the slaves with a request to perform the desired
operation. When the operation is complete, the slave waits for another request
from the master. When subroutine destroy is called from the master process,
the slave processes are terminated.

PHAML was written to be portable not only across different architectures
and compilers, but also across different message passing means. All communica-
tion between processes is isolated in one module, message passing. This module
contains the data structures to maintain the information needed about the par-
allel configuration, and all operations that PHAML uses for communication, such
as comm init (initialization), phaml send, phaml recv, phaml global max, etc.
Thus to introduce a new means of message passing, one need only write a new
version of module message passing that adheres to the defined API. PHAML
contains versions for PVM, MPI 1 (without spawning), MPI 2 (with spawning),
and a dummy version for sequential programs.

6 Conclusion

This paper described the software design of PHAML, a parallel program for the
solution of partial differential equations using finite elements, adaptive refine-
ment and a multi-level solver. The program is written in Fortran 90 and makes
heavy use of modules for program organization and data encapsulation. The user
interface is small and makes use of optional and keyword arguments to keep the
calling sequence short and readable. The parallelism is hidden from the user,
and portable across different message passing libraries.

679The Design of a Parallel Adaptive Multi-level Code in Fortran 90

The PHAML software has been placed in the public domain, and is available
at URL to be determined.

References

1. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Green-
baum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK
Users’ Guide, SIAM, Philadelphia, 1982

2. Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout,
V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994

3. Boman, E., Devine, K., Hendrickson, B., Mitchell, W. F., St. John, M., Vaughan,
C.: Zoltan: A dynamic load-balancing library for parallel applications, user’s guide,
Sandia Technical Report SAND99-1377 (2000)

4. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Snderam, V.: PVM:
Parallel Virtual Machine. A Users’ Guide and Tutorial for Networked Parallel
Computing, MIT Press, Cambridge, 1994

5. Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W.,
Snir, M.: MPI: The Complete Reference, MIT Press, Cambridge, MA, 1998

6. Kilgard, M.: The OpenGL Utility Toolkit (GLUT) programming interface API
version 3, http://www.opengl.org (1996)

7. Lawson, C. L., Hanson, R. J., Kincaid, D., Krogh, F. T.: Basic Linear Algebra
Subprograms for FORTRAN usage, ACM Trans. Math. Soft. 5 (1979) 308–323

8. Lehoucq, R. B., Sorensen, D. C., Yang, C.: ARPACK Users’ Guide, SIAM,
Philadelphia, 1998

9. Mitchell, W. F.: Adaptive refinement for arbitrary finite element spaces with hier-
archical bases, J. Comp. Appl. Math. 36 (1991) 65–78

10. Mitchell, W. F.: Optimal multilevel iterative methods for adaptive grids, SIAM J.
Sci. Statist. Comput. 13 (1992) 146–167

11. Mitchell, W. F.: MGGHAT user’s guide version 1.1, NISTIR 5948 (1997)
12. Mitchell, W. F.: A Fortran 90 interface for OpenGL: Revised January 1998, NISTIR

6134 (1998)
13. Mitchell, W. F.: The full domain partition approach to distributing adaptive grids,

Appl. Num. Math. 26 (1998) 265–275
14. Mitchell, W. F.: The full domain partition approach to parallel adaptive refinement,

in Grid Generation and Adaptive Algorithms, IMA Volumes in Mathematics and
it Applications 113 Springer-Verlag (1998) 151–162

15. Mitchell, W. F.: A parallel multigrid method using the full domain partition, Elect.
Trans. Num. Anal. 6 (1998) 224–233

16. Mitchell, W. F.: The refinement-tree partition for parallel solution of partial dif-
ferential equations, NIST J. Res. 103 (1998) 405–414

17. Woo, M, Neider, J., Davis, T., Shreiner, D.: The OpenGL Programming Guide,
Addison-Wesley, 1999

680 W.F. Mitchell

	Overview
	Modules
	Data Structures
	User Interface
	Parallelism
	Conclusion
	References

