Skip to main content

Distributed Simulation with Cellular Automata: Architecture and Applications

  • Conference paper
  • First Online:
SOFSEM’99: Theory and Practice of Informatics (SOFSEM 1999)

abstract

Many fundamental problems from natural sciences deal with complex systems. We define a complex system as a population of unique elements with well defined microscopic attributes and interactions, showing emerging macroscopic behavior. This emergent behavior can, in general, not be predicted from the individual elements and their interactions. A typical example of emergent behavior is self- organization, e.g. Turing patterns in reaction-diffusion systems. Complex systems are often irreducible1 and can not be solved in an analytical way. The only available option to obtain more insight into these systems is through explicit simulation. Many of these problems are intractable: in order to obtain the required macroscopic information, extensive and computationally expensive simulation is necessary. Since simulation models of complex systems require an enormous computational effort, the only feasible way is to apply massively parallel computation. A major challenge is to apply High Performance Computing in research on complex systems and, in addition, to offer a parallel computing environment that is easily accessible for applications [62,63].

Irreducible problems can only be solved by direct simulation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Y. Bar-Yam. Dynamics of Complex Systems. Addison-Wesley, 1997.

    Google Scholar 

  2. R. G. Belleman, J. A. Kaandorp, and P. M. A. Sloot. A virtual environment for the exploration of diffuusion and flow phenomena in complex geometries. Future Generation Computer Systems, 14:209–214, 1998.

    Article  Google Scholar 

  3. H. Bersini and V. Detours. Asynchrony induces stability in cellular automata based models. In Proceedings of the IVth Conference on Artificial Life, pages 382–387, Cambridge, MA, July 1994.

    Google Scholar 

  4. K. Binder and D. W. Heermann. Monte Carlo Simulation in Statistical Physics. Springer-Verlag, New York, 1992.

    MATH  Google Scholar 

  5. D. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. Prentice-Hall, 1994.

    Google Scholar 

  6. S. G. Brush. History of the Lenz-Ising model. Rev. Mod. Phys., 39:883, 1967.

    Article  Google Scholar 

  7. A. W. Burks. Essays on Cellular Automata. Univ.Illinois Press, Illinois, 1970.

    MATH  Google Scholar 

  8. F. Celada and P. E. Seiden. A computer model of cellular interactions in the immune system. Immunology Today, 13(12):56–62, 1992.

    Article  Google Scholar 

  9. K. M. Chandy and J. Misra. Distributed simulation: A case study in design and verification of distributed programs. IEEE Transactions on Software Engineering, SE-5(5):440–452, September 1979.

    Article  MathSciNet  Google Scholar 

  10. S. Chen and G. D. Doolen. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech., 30:329, 1998.

    Article  MathSciNet  Google Scholar 

  11. B. Chopard and M. Droz. Cellular Automata Modeling of Physical Systems. Cambridge University Press, 1998.

    Google Scholar 

  12. J. P. Crutchfield. Critical computation, phase transitions and hierarchical learning. In M. Yamaguti, editor, Towards the Harnessing of Chaos, Amsterdam, 1994. Elsevier Science.

    Google Scholar 

  13. J. P. Crutchfield and M. Mitchell. The evolution of emergent computation. Proceedings of the National Academy of Sciences, 92(23):10742, 1995.

    Article  MATH  Google Scholar 

  14. J. P. Crutchfield and K. Young. Inferring statistical complexity. Phys. Rev. Lett, 63:105–108, 1989.

    Article  MathSciNet  Google Scholar 

  15. The distributed ASCI supercomputer (DAS). http://www.cs.vu.nl/bal/das.html.

  16. D. Dubbeldam, A. G. Hoekstra, and P. M. A. Sloot. Computational aspects of multi-species lattice-gas automata. In P. M. A. Sloot, M. Bubak, A. G. Hoekstra, and L. O. Hertzberger, editors, Proceedings of the International Conference HPCN Europe’ 99, volume 1593 of Lecture Notes on Computer Science, pages 339–349, 1999.

    Google Scholar 

  17. P. A. Dufort and C. J. Lumsden. The complexity and entropy of Turing machines. In Workshop on Physics and Computation, Dallas, Texas, 1994.

    Google Scholar 

  18. J. Feder. Fractals. Plenum Press, New York, London, 1988.

    MATH  Google Scholar 

  19. P. Gaspard and X.-J. Wang. Noise, chaos, and ε, τ )-entropy per unit time. Physics Letters, 235(6):291–343, 1993.

    MathSciNet  Google Scholar 

  20. R. J. Glauber. Time-dependent statistics of the Ising model. Journal of Mathematical Physics, 4(2):294–307, February 1963.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Grassberger. Long-range effects in an elementary cellular automaton. J. Stat. Phys., 45(1/2):27–39, 1986.

    Article  MathSciNet  Google Scholar 

  22. J. L. Harper, B. R. Rosen, and J. White. The Growth and Form of Modular Organisms. The Royal Society London, London, 1986.

    Google Scholar 

  23. T. E. Ingerson and R. L. Buvel. Structure in asynchronous cellular automata. Physica D, 10(1/2):59–68, January 1984.

    Article  MathSciNet  Google Scholar 

  24. D. R. Jefferson. Virtual time. ACM Transactions on Programming Languages and Systems, 7(3):404–425, July 1985.

    Article  MathSciNet  Google Scholar 

  25. J. A. Kaandorp. Fractal Modelling: Growth and Form in Biology. Springer-Verlag, Berlin, New York, 1994.

    MATH  Google Scholar 

  26. J. A. Kaandorp. Analysis and synthesis of radiate accretive growth in three dimensions. J. Theor. Biol., 175:39–55, 1995.

    Article  Google Scholar 

  27. J. A. Kaandorp. Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. Mar. Biol., (in press).

    Google Scholar 

  28. J. A. Kaandorp, C. Lowe, D. Frenkel, and P. M. A. Sloot. The e ect of nutrient diffusion and flow on coral morphology. Phys. Rev. Lett., 77-11):2328–2331, 1996.

    Article  Google Scholar 

  29. J. A. Kaandorp and P. M. A. Sloot. Growth and form of sponges and corals in a moving fluid. In A. Carbone and M. Gromov, editors, Pattern Formation in Biology, Dynamics and Computer Graphics, Singapore. World Scientific. (In press).

    Google Scholar 

  30. D. Kandhai, A. G. Hoekstra, M. Kataja, J. Timonen, and P. M. A. Sloot. Lattice Boltzmann hydrodynamics on parallel systems. Comp. Phys. Comm., 111:14–26, 1998.

    Article  MATH  Google Scholar 

  31. D. Kandhai, A. Koponen, A. Hoekstra, M. Kataja, J. Timonen, and P. M. A. Sloot. Implementation aspects of 3D lattice-BGK: Boundaries, accuracy and a new fast relaxation technique. In press, J. Comp. Phys., 1999.

    Google Scholar 

  32. D. Kandhai, D. Vidal, A. Hoekstra, H. Hoefsloot, P. Iedema, and P. Sloot. Lattice-Boltzmann and finite-element simulations of fluid flow in a SMRX static mixer. In press, Int. J. Num. Meth. Fluids, 1999.

    Google Scholar 

  33. S. A. Kauffman. The Origins of Order. Oxford University Press, 1993.

    Google Scholar 

  34. _A. Koponen, D. Kandhai, E. Hellin, M. Alava, A. Hoekstra, M. Kataja, K. Niskanen, P. Sloot, and J. Timonen. Permeability of three-dimensional random fiber webs. Phys. Rev. Lett., 80:716–719, 1998.

    Article  Google Scholar 

  35. C. G. Langton. Studying artificial life with cellular automata. Physica D, 22:120–149, 1986.

    Article  MathSciNet  Google Scholar 

  36. C. G. Langton. Computation at the edge of chaos: Phase transitions and emergent computation. Physica D, 42:12–37, 1990.

    Article  MathSciNet  Google Scholar 

  37. W. Li and N. H. Packard. The structure of the elementary cellular automata rule space. Complex Systems, 4:281–297, 1990.

    MathSciNet  Google Scholar 

  38. K. Lindgren and M. G. Nordahl. Universal computation in simple one-dimensional cellular automata. Complex Systems, 4:299–318, 1990.

    MATH  MathSciNet  Google Scholar 

  39. B. D. Lubachevsky. Efficient parallel simulation of asynchronous cellular arrays. Complex Systems, 1(6):1099–1123, December 1987.

    MATH  MathSciNet  Google Scholar 

  40. B. D. Lubachevsky. Efficient parallel simulations of dynamic Ising spin systems. Journal of Computational Physics, 75(1):103–122, March 1988.

    Article  MATH  Google Scholar 

  41. E. D. Lumer and G. Nicolis. Synchronous versus asynchronous dynamics in spatially distributed systems. Physica D, 71:440–452, 1994.

    Article  MATH  Google Scholar 

  42. J. Machta. The computational complexity of pattern formation. Journal of Statistical Physics, 70(3/4):949–967, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  43. J. Machta and R. Greenlaw. The parallel complexity of growth models. Journal of Statistical Physics, 77:755–781, 1994.

    Article  MATH  Google Scholar 

  44. P. Manneville, N. Boccara, G. Y. Vichniac, and R. Bidaux, editors. Cellular Automata and Modeling of Complex Physical Systems, volume 46 of Springer Proceedings in Physics. Springer-Verlag, 1989.

    Google Scholar 

  45. E. McCauley, W. G. Wilson, and A. M. de Roos. Dynamics of age-structured and spatially structured predator-prey interactions: Individual based models and population-level formulations. The American Naturalist, 142(3):412–442, 1993.

    Article  Google Scholar 

  46. M. Minsky. Computation: Finite and In finite Machines. Prentice-Hall, Englewood Cliffs, N.J., 1967.

    MATH  Google Scholar 

  47. M. Mitchell. Computation in cellular automata: A selected review. In T. Gramss, S. Bornholdt, M. Gross, M. Mitchell, and T. Pellizzari, editors, Non-Standard Computation. Wiley-VCH, 1998.

    Google Scholar 

  48. M. Mitchell, J. P. Crutch field, and P. T. Hraber. Dynamics, computation, and the ‘edge of chaos’: A re-examination. In G. Cowan, D. Pines, and D. Melzner, editors, Complexity: Metaphors, Models, and Reality, 1994.

    Google Scholar 

  49. C. Moore and M. G. Nordhal. Lattice gas prediction is p-complete. Technical report, Santa Fe Instute for Complex studies, 1997. SFI 97-04-043.

    Google Scholar 

  50. D. M. Nicol and J. H. Saltz. An analysis of scatter decomposition. IEEE transactions on computers, 39(11):1337–1345, 1990.

    Article  Google Scholar 

  51. B. J. Overeinder and P. M. A. Sloot. Application of Time Warp to parallel simulations with asynchronous cellular automata. In Proceedings of the 1993 European Simulation Symposium, pages 397–402, Delft,The Netherlands, October 1993.

    Google Scholar 

  52. B. J. Overeinder and P. M. A. Sloot. Breaking the curse of dynamics by task migration: Pilot experiments in the polder metacomputer. In Recent Advances in Parallel Virtual Machine and Message Passing Interface, volume 1332 of Lecture Notes in Computer Science, pages 194–207, Berlin, 1997. Springer-Verlag.

    Google Scholar 

  53. B. J. Overeinder, P. M. A. Sloot, and L. O. Hertzberger. Time Warp on a Trans-puter platform: Pilot study with asynchronous cellular automata. In Parallel Computing and Transputer Applications, pages 1303–1312, Barcelona, Spain, September 1992.

    Google Scholar 

  54. N. H. Packard. Adaptation toward the edge of chaos. In J.A.S. Kelso, A.J. Mandell, and M.F. Shlesinger, editors, Dynamic Patterns in Complex Systems, 1988.

    Google Scholar 

  55. F. Reif. Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New York, 1965.

    Google Scholar 

  56. J. F. de Ronde. Mapping in High Performance Computing. PhD thesis, Department of Computer Science, University of Amsterdam, Amsterdam, The Netherlands, February 1998.

    Google Scholar 

  57. J. F. de Ronde, A. Schoneveld, and P. M. A. Sloot. Load balancing by redundant decomposition and mapping. In H. Liddell, A. Colbrook, B. Hertzberger, and P. Sloot, editors, High Performance Computing and Networking (HPCN’96), pages 555–561, 1996.

    Google Scholar 

  58. D. H. Rothman and S. Zaleski. Lattice-Gas Cellular Automata, Simple Models of Complex Hydrodynamics. Cambridge University Press, 1997.

    Google Scholar 

  59. A. Schoneveld, J. F. de Ronde, and P. M. A. Sloot. Task allocation by parallel evolutionary computing. Journal of Parallel and Distributed Computing, 47(1):91–97, 1997.

    Article  Google Scholar 

  60. W. Shannon and W. Weaver. The Mathematical Theory of Communication. University of Illinois, Urbana, 1949.

    MATH  Google Scholar 

  61. H. D. Simon. Partioning of unstructured problems for parallel processing. Computing Systems in Engeneering, 2(2/3):135–148, 1991.

    Article  Google Scholar 

  62. P. M. A. Sloot. High performance simulation. EUROSIM-Simulation News Europe, (15):15–18, 1995.

    Google Scholar 

  63. P. M. A. Sloot. Modelling for parallel simulation: Possibilities and pitfalls,invited lecture. In Eurosim’95, Simulation congress, pages 29–44, Amsterdam, the Netherlands, 1995.

    Google Scholar 

  64. P. M. A. Sloot, A. Schoneveld, J. F. de Ronde, and J. A. Kaandorp. Large scale simulations of complex systems Part I: Conceptual framework. Technical report, Santa Fe Instute for Complex studies, 1997. SFI Working Paper: 97-07-070.

    Google Scholar 

  65. P. M. A. Sloot and D. Talia. Parallel cellular automata: Special issue on cellular automata. Future Generation Computer Systems, 1999. (In press).

    Google Scholar 

  66. S. Ulam. Some mathematical problems connected with patterns of growth gures. In A.W. Burks, editor, Essays on Cellular Automata, Illinois, 1970. Univ. Illinois Press.

    Google Scholar 

  67. J. E. N. Veron and M. Pichon. Scleractinia of Eastern Australia Part 1, volume 1 of Australian Institute of Marine Science Monograph Series. Australian Government Publishing Service, Canberra, 1976.

    Google Scholar 

  68. J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois, Urbana, 1966.

    Google Scholar 

  69. W. G. Wilson, A. M. de Roos, and E. McCauley. Spatial instabilities within the diffusive Lotka-Volterra system: Individual-based simulation results. Theoretical Population Biology, 43:91–127, 1993.

    Article  MATH  Google Scholar 

  70. A. T. Winfree, E. M. Winfree, and H. Seifert. Organizing centers in cellular excitable medium. Physica D, 17:109, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  71. T. A. Witten and L. M. Sander. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett., 47(19):1400–1403, 1981.

    Article  Google Scholar 

  72. S. Wolfram. Universality and complexity in cellular automata. Physica D, 10:1–35, 1984.

    Article  MathSciNet  Google Scholar 

  73. S. Wolfram. Cellular Automata and Complexity. Addison-Wesley, 1994.

    Google Scholar 

  74. B. P. Zeigler. Theory of Modelling and Simulation. John Wiley and Sons, Inc., New York, 1976.

    MATH  Google Scholar 

  75. Bernard P. Zeigler. Discrete event models for cell space simulation. International Journal of Theoretical Physics, 21(6/7):573–588, 1982.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sloot, P.M.A., Kaandorpa, J.A., Hoekstra, A.G., Overeinder, B.J. (1999). Distributed Simulation with Cellular Automata: Architecture and Applications. In: Pavelka, J., Tel, G., Bartošek, M. (eds) SOFSEM’99: Theory and Practice of Informatics. SOFSEM 1999. Lecture Notes in Computer Science, vol 1725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47849-3_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-47849-3_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66694-3

  • Online ISBN: 978-3-540-47849-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics