abstract
Many fundamental problems from natural sciences deal with complex systems. We define a complex system as a population of unique elements with well defined microscopic attributes and interactions, showing emerging macroscopic behavior. This emergent behavior can, in general, not be predicted from the individual elements and their interactions. A typical example of emergent behavior is self- organization, e.g. Turing patterns in reaction-diffusion systems. Complex systems are often irreducible1 and can not be solved in an analytical way. The only available option to obtain more insight into these systems is through explicit simulation. Many of these problems are intractable: in order to obtain the required macroscopic information, extensive and computationally expensive simulation is necessary. Since simulation models of complex systems require an enormous computational effort, the only feasible way is to apply massively parallel computation. A major challenge is to apply High Performance Computing in research on complex systems and, in addition, to offer a parallel computing environment that is easily accessible for applications [62,63].
Irreducible problems can only be solved by direct simulation
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Y. Bar-Yam. Dynamics of Complex Systems. Addison-Wesley, 1997.
R. G. Belleman, J. A. Kaandorp, and P. M. A. Sloot. A virtual environment for the exploration of diffuusion and flow phenomena in complex geometries. Future Generation Computer Systems, 14:209–214, 1998.
H. Bersini and V. Detours. Asynchrony induces stability in cellular automata based models. In Proceedings of the IVth Conference on Artificial Life, pages 382–387, Cambridge, MA, July 1994.
K. Binder and D. W. Heermann. Monte Carlo Simulation in Statistical Physics. Springer-Verlag, New York, 1992.
D. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. Prentice-Hall, 1994.
S. G. Brush. History of the Lenz-Ising model. Rev. Mod. Phys., 39:883, 1967.
A. W. Burks. Essays on Cellular Automata. Univ.Illinois Press, Illinois, 1970.
F. Celada and P. E. Seiden. A computer model of cellular interactions in the immune system. Immunology Today, 13(12):56–62, 1992.
K. M. Chandy and J. Misra. Distributed simulation: A case study in design and verification of distributed programs. IEEE Transactions on Software Engineering, SE-5(5):440–452, September 1979.
S. Chen and G. D. Doolen. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech., 30:329, 1998.
B. Chopard and M. Droz. Cellular Automata Modeling of Physical Systems. Cambridge University Press, 1998.
J. P. Crutchfield. Critical computation, phase transitions and hierarchical learning. In M. Yamaguti, editor, Towards the Harnessing of Chaos, Amsterdam, 1994. Elsevier Science.
J. P. Crutchfield and M. Mitchell. The evolution of emergent computation. Proceedings of the National Academy of Sciences, 92(23):10742, 1995.
J. P. Crutchfield and K. Young. Inferring statistical complexity. Phys. Rev. Lett, 63:105–108, 1989.
The distributed ASCI supercomputer (DAS). http://www.cs.vu.nl/bal/das.html.
D. Dubbeldam, A. G. Hoekstra, and P. M. A. Sloot. Computational aspects of multi-species lattice-gas automata. In P. M. A. Sloot, M. Bubak, A. G. Hoekstra, and L. O. Hertzberger, editors, Proceedings of the International Conference HPCN Europe’ 99, volume 1593 of Lecture Notes on Computer Science, pages 339–349, 1999.
P. A. Dufort and C. J. Lumsden. The complexity and entropy of Turing machines. In Workshop on Physics and Computation, Dallas, Texas, 1994.
J. Feder. Fractals. Plenum Press, New York, London, 1988.
P. Gaspard and X.-J. Wang. Noise, chaos, and ε, τ )-entropy per unit time. Physics Letters, 235(6):291–343, 1993.
R. J. Glauber. Time-dependent statistics of the Ising model. Journal of Mathematical Physics, 4(2):294–307, February 1963.
P. Grassberger. Long-range effects in an elementary cellular automaton. J. Stat. Phys., 45(1/2):27–39, 1986.
J. L. Harper, B. R. Rosen, and J. White. The Growth and Form of Modular Organisms. The Royal Society London, London, 1986.
T. E. Ingerson and R. L. Buvel. Structure in asynchronous cellular automata. Physica D, 10(1/2):59–68, January 1984.
D. R. Jefferson. Virtual time. ACM Transactions on Programming Languages and Systems, 7(3):404–425, July 1985.
J. A. Kaandorp. Fractal Modelling: Growth and Form in Biology. Springer-Verlag, Berlin, New York, 1994.
J. A. Kaandorp. Analysis and synthesis of radiate accretive growth in three dimensions. J. Theor. Biol., 175:39–55, 1995.
J. A. Kaandorp. Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. Mar. Biol., (in press).
J. A. Kaandorp, C. Lowe, D. Frenkel, and P. M. A. Sloot. The e ect of nutrient diffusion and flow on coral morphology. Phys. Rev. Lett., 77-11):2328–2331, 1996.
J. A. Kaandorp and P. M. A. Sloot. Growth and form of sponges and corals in a moving fluid. In A. Carbone and M. Gromov, editors, Pattern Formation in Biology, Dynamics and Computer Graphics, Singapore. World Scientific. (In press).
D. Kandhai, A. G. Hoekstra, M. Kataja, J. Timonen, and P. M. A. Sloot. Lattice Boltzmann hydrodynamics on parallel systems. Comp. Phys. Comm., 111:14–26, 1998.
D. Kandhai, A. Koponen, A. Hoekstra, M. Kataja, J. Timonen, and P. M. A. Sloot. Implementation aspects of 3D lattice-BGK: Boundaries, accuracy and a new fast relaxation technique. In press, J. Comp. Phys., 1999.
D. Kandhai, D. Vidal, A. Hoekstra, H. Hoefsloot, P. Iedema, and P. Sloot. Lattice-Boltzmann and finite-element simulations of fluid flow in a SMRX static mixer. In press, Int. J. Num. Meth. Fluids, 1999.
S. A. Kauffman. The Origins of Order. Oxford University Press, 1993.
_A. Koponen, D. Kandhai, E. Hellin, M. Alava, A. Hoekstra, M. Kataja, K. Niskanen, P. Sloot, and J. Timonen. Permeability of three-dimensional random fiber webs. Phys. Rev. Lett., 80:716–719, 1998.
C. G. Langton. Studying artificial life with cellular automata. Physica D, 22:120–149, 1986.
C. G. Langton. Computation at the edge of chaos: Phase transitions and emergent computation. Physica D, 42:12–37, 1990.
W. Li and N. H. Packard. The structure of the elementary cellular automata rule space. Complex Systems, 4:281–297, 1990.
K. Lindgren and M. G. Nordahl. Universal computation in simple one-dimensional cellular automata. Complex Systems, 4:299–318, 1990.
B. D. Lubachevsky. Efficient parallel simulation of asynchronous cellular arrays. Complex Systems, 1(6):1099–1123, December 1987.
B. D. Lubachevsky. Efficient parallel simulations of dynamic Ising spin systems. Journal of Computational Physics, 75(1):103–122, March 1988.
E. D. Lumer and G. Nicolis. Synchronous versus asynchronous dynamics in spatially distributed systems. Physica D, 71:440–452, 1994.
J. Machta. The computational complexity of pattern formation. Journal of Statistical Physics, 70(3/4):949–967, 1993.
J. Machta and R. Greenlaw. The parallel complexity of growth models. Journal of Statistical Physics, 77:755–781, 1994.
P. Manneville, N. Boccara, G. Y. Vichniac, and R. Bidaux, editors. Cellular Automata and Modeling of Complex Physical Systems, volume 46 of Springer Proceedings in Physics. Springer-Verlag, 1989.
E. McCauley, W. G. Wilson, and A. M. de Roos. Dynamics of age-structured and spatially structured predator-prey interactions: Individual based models and population-level formulations. The American Naturalist, 142(3):412–442, 1993.
M. Minsky. Computation: Finite and In finite Machines. Prentice-Hall, Englewood Cliffs, N.J., 1967.
M. Mitchell. Computation in cellular automata: A selected review. In T. Gramss, S. Bornholdt, M. Gross, M. Mitchell, and T. Pellizzari, editors, Non-Standard Computation. Wiley-VCH, 1998.
M. Mitchell, J. P. Crutch field, and P. T. Hraber. Dynamics, computation, and the ‘edge of chaos’: A re-examination. In G. Cowan, D. Pines, and D. Melzner, editors, Complexity: Metaphors, Models, and Reality, 1994.
C. Moore and M. G. Nordhal. Lattice gas prediction is p-complete. Technical report, Santa Fe Instute for Complex studies, 1997. SFI 97-04-043.
D. M. Nicol and J. H. Saltz. An analysis of scatter decomposition. IEEE transactions on computers, 39(11):1337–1345, 1990.
B. J. Overeinder and P. M. A. Sloot. Application of Time Warp to parallel simulations with asynchronous cellular automata. In Proceedings of the 1993 European Simulation Symposium, pages 397–402, Delft,The Netherlands, October 1993.
B. J. Overeinder and P. M. A. Sloot. Breaking the curse of dynamics by task migration: Pilot experiments in the polder metacomputer. In Recent Advances in Parallel Virtual Machine and Message Passing Interface, volume 1332 of Lecture Notes in Computer Science, pages 194–207, Berlin, 1997. Springer-Verlag.
B. J. Overeinder, P. M. A. Sloot, and L. O. Hertzberger. Time Warp on a Trans-puter platform: Pilot study with asynchronous cellular automata. In Parallel Computing and Transputer Applications, pages 1303–1312, Barcelona, Spain, September 1992.
N. H. Packard. Adaptation toward the edge of chaos. In J.A.S. Kelso, A.J. Mandell, and M.F. Shlesinger, editors, Dynamic Patterns in Complex Systems, 1988.
F. Reif. Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New York, 1965.
J. F. de Ronde. Mapping in High Performance Computing. PhD thesis, Department of Computer Science, University of Amsterdam, Amsterdam, The Netherlands, February 1998.
J. F. de Ronde, A. Schoneveld, and P. M. A. Sloot. Load balancing by redundant decomposition and mapping. In H. Liddell, A. Colbrook, B. Hertzberger, and P. Sloot, editors, High Performance Computing and Networking (HPCN’96), pages 555–561, 1996.
D. H. Rothman and S. Zaleski. Lattice-Gas Cellular Automata, Simple Models of Complex Hydrodynamics. Cambridge University Press, 1997.
A. Schoneveld, J. F. de Ronde, and P. M. A. Sloot. Task allocation by parallel evolutionary computing. Journal of Parallel and Distributed Computing, 47(1):91–97, 1997.
W. Shannon and W. Weaver. The Mathematical Theory of Communication. University of Illinois, Urbana, 1949.
H. D. Simon. Partioning of unstructured problems for parallel processing. Computing Systems in Engeneering, 2(2/3):135–148, 1991.
P. M. A. Sloot. High performance simulation. EUROSIM-Simulation News Europe, (15):15–18, 1995.
P. M. A. Sloot. Modelling for parallel simulation: Possibilities and pitfalls,invited lecture. In Eurosim’95, Simulation congress, pages 29–44, Amsterdam, the Netherlands, 1995.
P. M. A. Sloot, A. Schoneveld, J. F. de Ronde, and J. A. Kaandorp. Large scale simulations of complex systems Part I: Conceptual framework. Technical report, Santa Fe Instute for Complex studies, 1997. SFI Working Paper: 97-07-070.
P. M. A. Sloot and D. Talia. Parallel cellular automata: Special issue on cellular automata. Future Generation Computer Systems, 1999. (In press).
S. Ulam. Some mathematical problems connected with patterns of growth gures. In A.W. Burks, editor, Essays on Cellular Automata, Illinois, 1970. Univ. Illinois Press.
J. E. N. Veron and M. Pichon. Scleractinia of Eastern Australia Part 1, volume 1 of Australian Institute of Marine Science Monograph Series. Australian Government Publishing Service, Canberra, 1976.
J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois, Urbana, 1966.
W. G. Wilson, A. M. de Roos, and E. McCauley. Spatial instabilities within the diffusive Lotka-Volterra system: Individual-based simulation results. Theoretical Population Biology, 43:91–127, 1993.
A. T. Winfree, E. M. Winfree, and H. Seifert. Organizing centers in cellular excitable medium. Physica D, 17:109, 1985.
T. A. Witten and L. M. Sander. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett., 47(19):1400–1403, 1981.
S. Wolfram. Universality and complexity in cellular automata. Physica D, 10:1–35, 1984.
S. Wolfram. Cellular Automata and Complexity. Addison-Wesley, 1994.
B. P. Zeigler. Theory of Modelling and Simulation. John Wiley and Sons, Inc., New York, 1976.
Bernard P. Zeigler. Discrete event models for cell space simulation. International Journal of Theoretical Physics, 21(6/7):573–588, 1982.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sloot, P.M.A., Kaandorpa, J.A., Hoekstra, A.G., Overeinder, B.J. (1999). Distributed Simulation with Cellular Automata: Architecture and Applications. In: Pavelka, J., Tel, G., Bartošek, M. (eds) SOFSEM’99: Theory and Practice of Informatics. SOFSEM 1999. Lecture Notes in Computer Science, vol 1725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47849-3_13
Download citation
DOI: https://doi.org/10.1007/3-540-47849-3_13
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66694-3
Online ISBN: 978-3-540-47849-2
eBook Packages: Springer Book Archive