Abstract
This paper presents some applications of data and signal processing using artificial neural nets (ANNs) which have been investigated at the University of Tübingen. The applications covering a wide range of different interesting domains: color restoration, gas sensing systems, internet information search and delivery, online quality control and nerve signal processing. The paper presents each application in detail and describes the problems which have been solved.
Acknowledgment
The authors like to thank Alexei Babanine, Thomas Hermle, Udo Heuser and Lothar Ludwig from Wilhelm-Schickard-Institut für Informatik, Technische Informatik, Universität Tübingen for their contributions to this paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
D. E. Rumelhart, G. E. Hinton and R. J. Williams: Learning representations by back-propagation errors, Nature 323, pp. 533–536, 1986.
D. E. Rumelhard and J. L. McClelland: Parallel Distributed Processing: Explorations in the Microstructure of Cognitron, I & II MIT Press, Cambridge MA, 1986.
T. Kohonen: Self-organized Formation of Topology Correct Feature Maps, Biological Cybernetics, 43:59–69, 1982.
T. Kohonen: Self-Organization and Associative Memory, Springer Series in Information Sciences, Springer-Verlag, 1989.
S. Grossberg: Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors, Biological Cybernetics 13, pp. 121–134, 1976.
P.-C. Hung: Colorimetric calibration for scanners and media, Proc. SPIE 1448, pp. 164–174, 1991.
H. R. Kang and P. G. Anderson: Neural network applications to the color scanner and printer calibrations, Journal of Electronic Imaging, Vol. 1, No. 2, pp. 125–135, 1992.
J. M. Bishop, M. J. Bushnell, and S. Westland: Application of neural networks to computer recipe prediction, Color Res. Appl. 16,3–9, 1991.
J. Göppert: Die topologisch interpolierende selbstorganisierende Karte in der Funktionsapproximation, (Ph.D. Thesis), Shaker Verlag Aachen, 1997.
U. Weimar: Elektronische Nasen: Gestern, heute, morgen, Sensoren und Meβtechnik, Number 148 in ITG Fachbericht, pp. 207–227, VDE-Verlag, Berlin, 1998.
U. Weimar and W. Göpel: Chemical imaging: Trends in multiparameter sensor systems, Conf. Proc. EUROSENSORS XI, Warszawa, 1997.
J. L. Mitrovics: Entwicklung eines portablen, modularen Sensorsystems zur quantitativen Gasanalyse, Diploma Thesis, Universität Tübingen, 1994.
T. M. Martinetz and K. J. Schulten: A “neural-gas” network learns topologies,in T. Kohonen, K. Mäkisara, O. Simula, J. Kangas (Eds.): Artificial Neural Networks, North-Holland, Amsterdam, pp. 397–402, 1991.
L. Xu, A. Krzyzak and E. Oja: Rival Penalized Competitive Learning for Clustering Analysis, RBF Net, and Curve Detection, IEEE Transactions on Neural Networks, Vol. 4, No. 4, July 1993.
E. Schikuta and M. Erhart: The BANG-Clustering System: Grid-Based Data Analysis, in X. Liu, P. Cohen and M. Berthold (Eds.): Advances in Intelligent Data Analysis (IDA-97), LNCS 1280, pp. 513–524, 1997.
B. Fritzke: A growing neural gas network learns topologies, in G. Tesauro, D. S. Touretzky and T. K. Leen (Eds.): Advances in Neural Information Processing Systems 7, pp. 625–632, MIT Press, Cambridge MA, 1995.
T. Poggio and F. Girosi: A theory of networks for approximation and learning, A.I. Memo (1140), 1989.
R. Hecht-Nielsen: Applications of counterpropagation networks, Neural Networks, 1(2):131–139, 1988.
H. Braun and M. Riedmiller: Rprop: A fast and robust backpropagation learning strategy, ACNN, pp. 591–598, 1993.
L. Ludwig, W. Kessler, J. Göppert and W. Rosenstiel: SOM with topological interpolation for the prediction of interference spectra, Proc. of EANN’95, Helsinki, Finnland, pp. 379–389, 1995.
L. Ludwig, U. Epperlein, H.-H. Kuge, P. Federl, B. Koppenhoefer and W. Rosenstiel: Classifikation of’ fingerprints’ of process control monitoring-data with self-organizing maps, In Proc. of EANN’97, Stockholm, Sweden, pp. 107–111, 1997.
P. Dario and M. Cocco: Technologies and Applications of Microfabricated Implantable Neural Prostheses, IARPWorkshop on Micromachine & Systems 1993, Tokyo,1993.
M. Bogdan and W. Rosenstiel: Artificial Neural Nets for Peripheral Nervous System-remoted Limb Prostheses,Nueral Networks & their Application, pp. 193–202, Nanterre, 1994.
M. Bogdan and W. Rosenstiel: Real Time Processing of Nerve Signals for Controlling a Limb Prostheses, Information Processing in Cells and Tissues, Shefield, pp. 26–38, 1997.
T. Stieglitz, H. Beutel and J.-U. Meyer: A flexible, light-weighted, multichannel sieve electrode with integrated cables for inter-facing regenerating peripheral nerves, Proceedings of 10th Eurosensors Conference, 1996.
H. G. Heinzel, J. M. Weimann and E. Marder: The Behavioral Repertoire of the Gastric Mill in the Crab, Cancer pagurus: An in situ Endoscopic and Electrophysiological Examination, The Journal of Neuroscience, pp. 1793–1803, April 1993.
M. Bogdan: Signalverarbeitung biologischer neuronaler Netze zur Steuerung einer Prothese mit Hilfe künstlicher neuronaler Netze, Ph.D. Thesis, Universität Tübingen, Cuvillier Verlag Göttingen, ISBN3-89712-336-3, 1998.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bogdan, M., Rosenstiel, W. (1999). Application of Artificial Neural Networks for Different Engineering Problems. In: Pavelka, J., Tel, G., Bartošek, M. (eds) SOFSEM’99: Theory and Practice of Informatics. SOFSEM 1999. Lecture Notes in Computer Science, vol 1725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47849-3_17
Download citation
DOI: https://doi.org/10.1007/3-540-47849-3_17
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66694-3
Online ISBN: 978-3-540-47849-2
eBook Packages: Springer Book Archive