Skip to main content

An Exponential Lower Bound on the Length of Some Classes of Branch-and-Cut Proofs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2337))

Abstract

Branch-and-cut methods are among the more successful techniques for solving integer programming problems. They can also be used to prove that all solutions of an integer program satisfy a given linear inequality. We examine the complexity of branch-and-cut proofs in the context of 0-1 integer programs. We prove an exponential lower bound on the length of branch-and-cut proofs in the case where branching is on the variables and the cutting planes used are lift-and-project cuts (also called simple disjunctive cuts by some authors), Gomory-Chvátal cuts, and cuts arising from the N0 matrix-cut operator of Lovász and Schrijver. A consequence of the lower-bound result in this paper is that branch-and-cut methods of the type described above have exponential running time in the worst case.

This work was supported by ONR Grant N00014-98-1-0014.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M.: The complexity of the pigeonhole principle. Combinatorica 14 (1994) 417–433

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Boppana, R.: The monotone circuit complexity of Boolean functions. Combinatorica 7 (1987) 1–22

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreev, A.E.: On a method for obtaining lower bounds for the complexity of individual monotone functions. Soviet Mathematics-Doklady 31 (1985) 530–534

    MATH  Google Scholar 

  4. Balas, E.: Disjunctive programming. Annals of Discrete Mathematics 5 (1979) 3–51

    Article  MathSciNet  MATH  Google Scholar 

  5. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0-1 programs. Mathematical Programming 58 (1993) 295–324

    Article  MathSciNet  MATH  Google Scholar 

  6. Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0-1 programming by lift-and-project in a branch-and-cut framework. Management Science 42 (1996) 1229–1246

    Article  MATH  Google Scholar 

  7. Balas, E., Ceria, S., Cornuéjols, G., Natraj, G.: Gomory cuts revisited. Operations Research Letters 19 (1996) 1–9

    Article  MathSciNet  MATH  Google Scholar 

  8. Beame, P., Pitassi, T.: Propositional proof complexity: past, present, and future. Bulletin of the European Association for Theoretical Computer Science 65 (1989) 66–89

    Google Scholar 

  9. Bonet, M., Pitassi, T., Raz, R.: Lower bounds for cutting planes proofs with small coefficients. The Journal of Symbolic Logic 62 (1997) 708–728.

    Article  MathSciNet  MATH  Google Scholar 

  10. Boppana, R., Sipser, M.: The complexity of finite functions. In: Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity. MIT Press/Elsevier (1990) 757–804

    Google Scholar 

  11. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics 4 (1973) 305–337

    Article  MathSciNet  MATH  Google Scholar 

  12. Chvátal, V.: Hard knapsack problems. Operations Research 28 (1980) 1402–1411

    Article  MathSciNet  MATH  Google Scholar 

  13. Chvátal, V.: Cutting-plane proofs and the stability number of a graph. Report Number 84326-OR. Insitut für Ökonometrie und Operations Research, Universität Bonn, Bonn. (1984)

    Google Scholar 

  14. Chvátal, V.: Cutting planes in combinatorics. European Journal of Combinatorics 6 (1985) 217–226

    MathSciNet  MATH  Google Scholar 

  15. Chvátal, V., Cook, W., Hartmann, M.: On cutting plane proofs in combinatorial optimization. Linear Algebra and its Applications 114/115 (1989) 455–499

    Article  Google Scholar 

  16. Chvátal, V., Szemerédi, E.: Many hard examples for resolution. Journal of the Association for Computing Machinery 35 (1988) 759–768

    Article  MathSciNet  MATH  Google Scholar 

  17. Cook, S.A., Haken, A.: An exponential lower bound for the size of monotone real circuits. Journal of Computer and System Sciences 58 (1999) 326–335

    Article  MathSciNet  MATH  Google Scholar 

  18. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. Journal of Symbolic Logic 44 (1979) 36–50

    Article  MathSciNet  MATH  Google Scholar 

  19. Cook, W.: Cutting-plane proofs in polynomial space. Mathematical Programming 47 (1990) 11–18

    Article  MathSciNet  MATH  Google Scholar 

  20. Cook, W., Coullard, C.R., Turán, Gy.: On the complexity of cutting-plane proofs. Discrete Applied Mathematics 18 (1987) 25–38

    Article  MathSciNet  MATH  Google Scholar 

  21. Cook, W., Cunningham, W., Pulleyblank, W., Schrijver, A.: Combinatorial Optimization. Wiley, New York (1998)

    MATH  Google Scholar 

  22. Cook, W., Dash, S.: On the matrix-cut rank of polyhedra. Mathematics of Operations Research 26 (2001) 19–30

    Article  MathSciNet  MATH  Google Scholar 

  23. Cook, W., Hartmann, M.: On the complexity of branch and cut methods for the traveling salesman problem. In: Seymour, P.D., Cook, W. (eds.): Polyhedral Combinatorics, Vol. 1, DIMACS Series in Discrete Mathematics and Theoretical Computer Science (1990) 75–82

    Google Scholar 

  24. G. Cornuéjols and Li, Y.: Elementary closures for integer programs. Operations Research Letters 28 (2001) 1–8

    Article  MathSciNet  MATH  Google Scholar 

  25. Dash, S.: On the matrix cuts of Lovász and Schrijver and their use in integer programming. Ph.D. Thesis. Rice University, Houston, Texas (2001). Available as: Technical Report TR01-08. Rice University (2001)

    Google Scholar 

  26. Eisenbrand, F., Schulz, A.S.: Bounds on the Chvátal rank of polytopes in the 0/1-cube. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.): Integer Programming and Combinatorial Optimization, 7th International IPCO Conference. Springer, Berlin (1999) 137–150

    Chapter  Google Scholar 

  27. Goemans, M.X., Tunçel, L.: When does the positive semidefiniteness constraint help in lifting procedures. Mathematics of Operations Research 26 (2001) 796–815

    Article  MathSciNet  MATH  Google Scholar 

  28. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society 64 (1958) 275–278

    Article  MathSciNet  MATH  Google Scholar 

  29. Gomory, R.E.: An algorithm for the mixed integer problem. RM-2597, The Rand Corporation (1960)

    Google Scholar 

  30. Grötschel, M., Pulleyblank, W.R.: Clique tree inequalities and the symmetric traveling salesman problem. Mathematics of Operations Research 11 (1986) 1–33

    Article  MathSciNet  Google Scholar 

  31. Haken, A.: The intractability of resolution. Theoretical Computer Science 39 (1985) 297–308

    Article  MathSciNet  MATH  Google Scholar 

  32. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (1985)

    Google Scholar 

  33. Jeroslow, R.G.: Trivial integer programs unsolvable by branch-and-bound. Mathematical Programming 6 (1974) 105–109

    Article  MATH  Google Scholar 

  34. Jeroslow, R.G.: A cutting-plane game for facial disjunctive programs. SIAM Journal on Control and Optimization 18 (1980) 264–281

    Article  MathSciNet  MATH  Google Scholar 

  35. Krajíček, J.: Lower bounds to the size of constant-depth propositional proofs. Journal of Symbolic Logic 59 (1994) 73–86

    Article  MathSciNet  MATH  Google Scholar 

  36. Krajíček, J.: Interpolation theorems, lower bounds for proof systems and independence results for bounded arithmetic. Journal of Symbolic Logic 62 (1997) 457–486

    Article  MathSciNet  MATH  Google Scholar 

  37. Lovász, L.: Stable sets and polynomials. Discrete Mathematics 124 (1994) 137–153

    Article  MathSciNet  MATH  Google Scholar 

  38. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM Journal on Optimization 1 (1991) 166–190

    Article  MathSciNet  MATH  Google Scholar 

  39. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. Journal of Symbolic Logic 62 (1997) 981–998

    Article  MathSciNet  MATH  Google Scholar 

  40. Pudlák, P.: On the complexity of propositional calculus. In: Sets and Proofs, Invited papers from Logic Colloquium 1997. Cambridge University Press (1999) 197–218

    Google Scholar 

  41. Razborov, A.A., Lower bounds for the monotone complexity of some boolean functions. Dokladi Akademii Nauk SSSR 281 (1985) 798–801 (in Russian). English translation in: Soviet Mathematics-Doklady 31 (1985) 354–357

    MathSciNet  Google Scholar 

  42. Razborov, A.A., Unprovability of lower bounds on the circuit size in certain fragments of bounded arithmetic. Izvestiiya of the RAN 59 (1995) 201–224

    MathSciNet  Google Scholar 

  43. Schrijver, A.: On cutting planes. In: Deza, M., Rosenberg, I.G. (eds.): Combinatorics 79 Part II, Annals of Discrete Mathematics 9. North Holland, Amsterdam (1980) 291–296

    Google Scholar 

  44. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

    MATH  Google Scholar 

  45. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex representations for zero-one programming problems. SIAM Journal on Discrete Mathematics 3 (1990) 411–430

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dash, S. (2002). An Exponential Lower Bound on the Length of Some Classes of Branch-and-Cut Proofs. In: Cook, W.J., Schulz, A.S. (eds) Integer Programming and Combinatorial Optimization. IPCO 2002. Lecture Notes in Computer Science, vol 2337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47867-1_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-47867-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43676-8

  • Online ISBN: 978-3-540-47867-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics