Skip to main content

Polynomial-Time Separation of Simple Comb Inequalities

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2337))

Abstract

The comb inequalities are a well-known class of facet-inducing inequalities for the Traveling Salesman Problem, defined in terms of certain vertex sets called the handle and the teeth. We say that a comb inequality is simple if the following holds for each tooth: either the intersection of the tooth with the handle has cardinality one, or the part of the tooth outside the handle has cardinality one, or both. The simple comb inequalities generalize the classical 2-matching inequalities of Edmonds, and also the so-called Chvátal comb inequalities.

In 1982, Padberg and Rao [29] gave a polynomial-time algorithm for separating the 2-matching inequalities — i.e., for testing if a given fractional solution to an LP relaxation violates a 2-matching inequality. We extend this significantly by giving a polynomial-time algorithm for separating the simple comb inequalities. The key is a result due to Caprara and Fischetti.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Applegate, R.E. Bixby, V. Chvátal & W. Cook (1995) Finding cuts in the TSP (a preliminary report). Technical Report 95-05, DIMACS, Rutgers University, New Brunswick, NJ.

    Google Scholar 

  2. A. Caprara & M. Fischetti (1996) 0,1/2-Chvátal-Gomory cuts. Math. Program. 74, 221–235.

    MathSciNet  MATH  Google Scholar 

  3. A. Caprara, M. Fischetti & A.N. Letchford (2000) On the separation of maximally violated mod-k cuts. Math. Program. 87, 37–56.

    MathSciNet  MATH  Google Scholar 

  4. A. Caprara & A.N. Letchford (2001) On the separation of split cuts and related inequalities. To appear in Math. Program.

    Google Scholar 

  5. R. Carr (1997) Separating clique trees and bipartition inequalities having a fixed number of handles and teeth in polynomial time. Math. Oper. Res. 22, 257–265.

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Chvátal (1973) Edmonds polytopes and weakly Hamiltonian graphs. Math. Program. 5, 29–40.

    Article  MATH  Google Scholar 

  7. G.B. Dantzig, D.R. Fulkerson & S.M. Johnson (1954) Solution of a large-scale traveling salesman problem. Oper. Res. 2, 393–410.

    Article  MathSciNet  Google Scholar 

  8. J. Edmonds (1965) Maximum matching and a polyhedron with 0-1 vertices. J. Res. Nat. Bur. Standards 69B, 125–130.

    Article  MathSciNet  Google Scholar 

  9. L. Fleischer & É. Tardos (1999) Separating maximally violated comb inequalities in planar graphs. Math. Oper. Res. 24, 130–148.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Fonlupt & D. Naddef (1992) The traveling salesman problem in graphs with excluded minors. Math. Program. 53, 147–172.

    Article  MathSciNet  MATH  Google Scholar 

  11. M.X. Goemans (1995) Worst-case comparison of valid inequalities for the TSP. Math. Program. 69, 335–349.

    MathSciNet  MATH  Google Scholar 

  12. A.V. Goldberg & R.E. Tarjan (1988) A new approach to the maximum flow problem. J. of the A.C.M. 35, 921–940.

    MathSciNet  MATH  Google Scholar 

  13. M. Grötschel & O. Holland (1987) A cutting plane algorithm for minimum perfect 2-matching. Computing 39, 327–344.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Grötschel, L. Lovász & A.J. Schrijver (1988) Geometric Algorithms and Combinatorial Optimization. Wiley: New York.

    Book  MATH  Google Scholar 

  15. M. Grötschel & M.W. Padberg (1979) On the symmetric traveling salesman problem I: inequalities. Math. Program. 16, 265–280.

    Article  MATH  Google Scholar 

  16. M. Grötschel & M.W. Padberg (1979) On the symmetric traveling salesman problem II: lifting theorems and facets. Math. Program. 16, 281–302.

    Article  MATH  Google Scholar 

  17. M. Grötschel & K. Truemper (1989) Decomposition and optimization over cycles in binary matroids. J. Comb. Th. (B) 46, 306–337.

    Article  MATH  Google Scholar 

  18. M.R. Hensinger & D.P. Williamson (1996) On the number of small cuts in a graph. Inf. Proc. Lett. 59, 41–44.

    Article  Google Scholar 

  19. M. Jünger, G. Reinelt, G. Rinaldi (1995) The traveling salesman problem. In M. Ball, T. Magnanti, C. Monma & G. Nemhauser (eds.). Network Models, Handbooks in Operations Research and Management Science, 7, Elsevier Publisher B.V., Amsterdam, 225–330.

    Chapter  Google Scholar 

  20. M. Jünger, G. Reinelt & G. Rinaldi (1997) The traveling salesman problem. In M. Dell’Amico, F. Maffioli & S. Martello (eds.) Annotated Bibliographies in Combinatorial Optimization. Chichester, Wiley, 199–221.

    Google Scholar 

  21. A.N. Letchford (2000) Separating a superclass of comb inequalities in planar graphs. Math. Oper. Res. 25, 443–454.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Naddef (2001) Polyhedral theory and branch-and-cut algorithms for the symmetric TSP. In G. Gutin & A. Punnen (eds.), The Traveling Salesman Problem and its Variations. Kluwer Academic Publishers, 2002 (to appear).

    Google Scholar 

  23. D. Naddef & G. Rinaldi (1991) The symmetric traveling salesman polytope and its graphical relaxation: composition of valid inequalities. Math. Program. 51, 359–400.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Naddef & G. Rinaldi (1993) The graphical relaxation: a new framework for the symmetric traveling salesman polytope. Math. Program. 58, 53–88.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Naddef & S. Thienel (1998) Efficient separation routines for the symmetric traveling salesman problem I: general tools and comb separation. Working paper, LMC-IMAG, Grenoble.

    Google Scholar 

  26. H. Nagamochi, K. Nishimura and T. Ibaraki (1997) Computing all small cuts in undirected networks. SIAM Disc. Math. 10, 469–481.

    Article  MathSciNet  MATH  Google Scholar 

  27. G.L. Nemhauser and L.A. Wolsey (1988) Integer and Combinatorial Optimization. New York: Wiley.

    MATH  Google Scholar 

  28. M.W. Padberg & M. Grötschel (1985) Polyhedral computations. In E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan & D.B. Schmoys (Eds.) The Traveling Salesman Problem. John Wiley & Sons, Chichester.

    Google Scholar 

  29. M.W. Padberg & M.R. Rao (1982) Odd minimum cut-sets and b-matchings. Math. Oper. Res. 7, 67–80.

    Article  MathSciNet  MATH  Google Scholar 

  30. M.W. Padberg & G. Rinaldi (1990) Facet identification for the symmetric traveling salesman polytope. Math. Program. 47, 219–257.

    Article  MathSciNet  MATH  Google Scholar 

  31. M.W. Padberg & G. Rinaldi (1991) A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev. 33, 60–100.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Letchford, A.N., Lodi, A. (2002). Polynomial-Time Separation of Simple Comb Inequalities. In: Cook, W.J., Schulz, A.S. (eds) Integer Programming and Combinatorial Optimization. IPCO 2002. Lecture Notes in Computer Science, vol 2337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47867-1_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-47867-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43676-8

  • Online ISBN: 978-3-540-47867-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics