Skip to main content

A New Approach to Cactus Construction Applied to TSP Support Graphs

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2337))

Abstract

We present a novel approach to the construction of the cactus representation of all minimum cuts of a graph. The representation is a supergraph that stores the set of all mincuts compactly and mirrors its structure. We focus on support graphs occurring in the branch-and-cut approach to traveling salesman, vehicle routing and similar problems in a natural way. The ideas presented also apply to more general graphs. Unlike most previous construction approaches, we do not follow the Karzanov-Timofeev framework or a variation of it. Our deterministic algorithm is based on inclusion-minimal mincuts. We use Fleischer’s approach [J. Algorithms, 33(1):51–72, 1999], one of the fastest to date, as benchmark. The new algorithm shows an average speed-up factor of 20 for TSP-related support graphs in practice. We report computational results. Compared to the benchmark, we reduce the space required during construction for n-vertex graphs with m edges from to .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding Cuts in the TSP (A preliminary report). Technical Report 95-05, Center for Discrete Mathematics & Theoretical Computer Science, DIMACS, 1995. Available at http://dimacs.rutgers.edu/TechnicalReports.

  2. A. A. Benczúr. Cut structures and randomized algorithms in edge-connectivity problems. Department of Mathematics, MIT, 1997. Available at http://theses.mit.edu.

  3. R. E. Bixby. The Minimum Number of Edges and Vertices in a Graph with Edge Connectivity n and m n-Bonds. Networks, 5:253–298, 1975.

    MathSciNet  MATH  Google Scholar 

  4. K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. Journal of Computer Systems and Science, 13:335–379, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Caprara, M. Fischetti, and A. N. Letchford. On the separation of maximally violated mod-k cuts. Math. Program. Series A, 87(1):37–56, January 2000.

    Google Scholar 

  6. C. S. Chekuri, A. V. Goldberg, D. R. Karger, M. S. Levine, and C. Stein. Experimental Study of Minimum Cut Algorithms. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’ 97), pages 324–333, 1997.

    Google Scholar 

  7. T. Christof and G. Reinelt. Combinatorial Optimization and Small Polytopes. Top, 4(1):1–64, 1996. ISSN 1134-5764.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. De Vitis. The cactus representation of all minimum cuts in a weighted graph. Technical Report 454, IASI, Viale Manzoni 30, 00185 Roma, Italy, May 1997. Write to biblio@iasi.rm.cnr.it.

    Google Scholar 

  9. G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman problem. Journal of the ORSA, 2:393–410, 1954.

    MathSciNet  Google Scholar 

  10. E. A. Dinits, A. V. Karzanov, and M. V. Lomonosov. On the structure of a family of minimal weighted cuts in a graph. In A. A. Fridman, editor, Studies in Discrete Optimization, pages 290–306. Nauka, Moscow, 1976. Original article in Russian. English translation from http://www.loc.govorwww.nrc.ca/cisti.

    Google Scholar 

  11. L. Fleischer. Building Chain and Cactus Representations of All Minimum Cuts from Hao-Orlin in the Same Asymptotic Run Time. J. Algorithms, 33(1):51–72, October 1999. A former version appeared in LNCS 1412, pages 294–309, 1998.

    Google Scholar 

  12. L. Fleischer and É. Tardos. Separating maximally violated comb inequalities in planar graphs. Mathematics of Operations Research, 24(1):130–148, February 1999. A former version appeared in LNCS 1084, pages 475–489, 1996.

    Google Scholar 

  13. R. E. Gomory and T. C. Hu. Multi-terminal network flows. J. Soc. Indust. Appl. Math., 9(4):551–570, December 1961.

    Google Scholar 

  14. J. Hao and J. B. Orlin. A Faster Algorithm for Finding the Minimum Cut in a Directed Graph. J. Algorithms, 17:424–446, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Jünger and D. Naddef, editors. Computational Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions, volume 2241 of LNCS. Springer, 2001.

    Google Scholar 

  16. M. Jünger, G. Reinelt, and G. Rinaldi. The Traveling Salesman Problem. In M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, editors, Network Models, volume 7 of Handbooks in Operations Research and Management Science, chapter 4, pages 225–330. Elsevier, 1995.

    Google Scholar 

  17. M. Jünger, G. Rinaldi, and S. Thienel. Practical Performance of Efficient Minimum Cut Algorithms. Algorithmica, 26:172–195, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. R. Karger and C. Stein. A new approach to the minimum cut problem. Journal of the ACM, 43(4):601–640, July 1996.

    Google Scholar 

  19. A. V. Karzanov and E. A. Timofeev. Efficient algorithm for finding all minimal edge cuts of a nonoriented graph. Cybernetics, 22:156–162, 1986. Translated from Kibernetika, 2:8–12, 1986.

    Article  MATH  Google Scholar 

  20. A. N. Letchford. Separating a superclass of comb inequalities in planar graphs. Mathematics of Operations Research, 25(3):443–454, August 2000.

    Google Scholar 

  21. H. Nagamochi and T. Kameda. Canonical Cactus Representation for Minimum Cuts. Japan Journal of Industrial and Applied Mathematics, 11(3):343–361, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Nagamochi and T. Kameda. Constructing cactus representation for all minimum cuts in an undirected network. Journal of the Operations Research Society of Japan, 39(2):135–158, 1996.

    MathSciNet  MATH  Google Scholar 

  23. H. Nagamochi, Y. Nakao, and T. Ibaraki. A Fast Algorithm for Cactus Representations of Minimum Cuts. Japan Journal of Industrial and Applied Mathematics, 17(2):245–264, June 2000.

    Google Scholar 

  24. D. Naddef and G. Rinaldi. The crown inequalities for the symmetric traveling salesman polytope. Mathematics of Operations Research, 17(2):308–326, May 1992.

    Google Scholar 

  25. D. Naddef and S. Thienel. Efficient Separation Routines for the Symmetric Traveling Salesman Problem I: General Tools and Comb Separation. Technical report, ENSIMAG (France), Universität zu Köln (Germany), 1999. To Appear in Math. Program.

    Google Scholar 

  26. D. Naddef and S. Thienel. Efficient Separation Routines for the Symmetric Traveling Salesman Problem II: Separating Multi Handle Inequalities. Technical report, ENSIMAG (France), Universität zu Köln (Germany), January 2001. To Appear in Math. Program.

    Google Scholar 

  27. D. Naor and V. V. Vazirani. Representing and Enumerating Edge Connectivity Cuts in . LNCS 519, pp. 273–285, 1991.

    Google Scholar 

  28. J.-C. Picard and M. Queyranne. On the structure of all minimum cuts in a network and applications. Math. Program. Study, 13:8–16, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  29. J.-C. Picard and M. Queyranne. Selected applications of minimum cuts in networks. INFOR, Can. J. Oper. Res. Inf. Process., 20(4):394–422, November 1982.

    Google Scholar 

  30. M. Padberg and G. Rinaldi. Facet identification for the symmetric traveling salesman polytope. Math. Program., 47:219–257, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Reinelt. TSPLIB-A Traveling Salesman Problem Library. ORSA Journal on Computing, 3(4):376–384, Fall 1991. http://www.informatik.uni-heidelberg.de/groups/comopt/software/TSPLIB95

    Article  MATH  Google Scholar 

  32. T. K. Ralphs, L. Kopman, W. R. Pulleyblank, and L. E. Trotter Jr. On the Capacitated Vehicle Routing Problem. Submitted to Math. Program., 2000. Available at http://www.branchandcut.org/VRP.

  33. P. Toth and D. Vigo, editors. The Vehicle Routing Problem. Monographs on Discrete Mathematics and Applications. SIAM, 2002. ISBN 0-89871-498-2.

    Google Scholar 

  34. K. M. Wenger. Kaktus-Repräsentation der minimalen Schnitte eines Graphen und Anwendung im Branch-and-Cut Ansatz für das TSP. Diplomarbeit, Institut für Informatik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wenger, K.M. (2002). A New Approach to Cactus Construction Applied to TSP Support Graphs. In: Cook, W.J., Schulz, A.S. (eds) Integer Programming and Combinatorial Optimization. IPCO 2002. Lecture Notes in Computer Science, vol 2337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47867-1_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-47867-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43676-8

  • Online ISBN: 978-3-540-47867-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics