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Abstract. Human activity can be described as a sequence of 3D body postures.
The traditional approach to recognition and 3D reconstruction of human activity
has been to track motion in 3D, mainly using advanced geometric and dynamic
models. In this paper we reverse this process. View based activity recognition
serves as an input to a human body location tracker with the ultimate goal of 3D
reanimation in mind. We demonstrate that specific human actions can be detected
from single frame postures in a video sequence. By recognizing the image of a
person’s posture as corresponding to a particular key frame from a set of stored
key frames, it is possible to map body locations from the key frames to actual
frames. This is achieved using a shape matching algorithm based on qualitative
similarity that computes point to point correspondence between shapes, together
with information about appearance. As the mapping is from fixed key frames,
our tracking does not suffer from the problem of having to reinitialise when it
gets lost. It is effectively a closed loop. We present experimental results both for
recognition and tracking for a sequence of a tennis player.
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1 Introduction

Two of the most important applications of the analysis of human motion in image se-
quences are 3D reconstruction and action recognition. Using dynamic models of inter-
related shape primitives is traditionally the dominant approach to these problems often
resulting in very impressive demonstrations [4,8,15,9,11,16,17,18]. Successful 3D dy-
namic human modelling would simplify the task of inferring the underlying human
activity. The main drawback of this approach, however, is that the tracking is not per-
formed in a closed loop. Once the tracking fails, it has to be manually reinitialised.
Automatic initialisation of a model based tracker requires the recognition of the 3D pose
of the person being tracked. Recognizing the pose of a person is very often equivalent to
recognizing the action taking place. If the main purpose of the 3D dynamic modelling
is to recognize actions, this creates a paradox. Automating 3D model based tracking
requires solving the problem for which the tracking was devised: action recognition.
This applies, of course, only if we consider human pose and activity recognition as
being equivalent. This remains to be proved. However, the problems of tracking, 3D
modelling and recognition seem far more interrelated than has so far been considered.
Introducing pose recognition into the tracking paradigm makes it into a closed loop
system and one capable of automatic recovery from failure modes. However, if we have
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a system for 3D pose detection it could equally well be used permanently during the
tracking, not just for error recovery.

The idea that recognition and stored prior information should precede tracking, or
even totally replace it, has been expressed explicitly in recent works. Howe et. al [12] use
manual initialisation and subsequently rely on prior learned 3D information, combined
with image tracking, to capture the motion of body parts. Brand [3] uses shadows and
silhouettes to recognize complete 3D motion sequences. Toyama and Blake [19] use the
idea of key frame recognition. This totally replaces the goal of tracking specific body
parts. In contrast to these, our aim is to show that recognition of specific key frames,
similar to that in [19] can be used in order to aid the frame to frame tracking and to
close the tracking loop. The idea is to store a set of key frames to represent a specific
action. These key frames are matched to the frames of an actual image sequence using
an algorithm for computing qualitative shape equivalence [5]. This algorithm produces
point to point correspondence between the key frame and the actual frame. Using this
correspondence field we can transfer any body location on the key frame to that of the
actual frame. Point transfer using the shape matching can, of course, also be computed
from frame to frame in the actual sequence. This, however, is still a standard open loop
tracker. The use of the key frames for point transfer closes the tracking loop and allows
for error recovery at any instant, provided there is a key frame similar enough to the
actual frame to allow for matching.

The paper focuses on three distinct but interrelated topics. Initially the shape match-
ing algorithm is described. It is an improved version of the algorithm in [5] using com-
binatorial geometric hashing. Its power is demonstrated by applying it to the problem
of action recognition, in our case this equates to the detection of action-specific poses.
In particular the beginning of forehand strokes are extracted from a long sequence of
tennis footage. At this stage we now know that it is possible to locate image frames
similar to specific key frames. Our tracking paradigm is then explained. It is based upon
transferring body locations from appropriately matched key frames. The last part of the
paper describes how to achieve robust point transferral in the presence of imperfect data.

2 Shape Correspondence by Combinatorial Geometric Hashing

If we subjectively consider two images to be similar as in figure 1 we are almost always
able to map a certain point in one image to a specific point in the other. This ability to
define a correspondence field between the two images can be taken as a starting point for
defining equivalence between shapes. If the field represents a smooth deformation of one
shape into the other we are likely to consider the shapes as similar or belonging to the
same category. The smaller the deformation the larger the similarity. Computing a cor-
respondence field between two shapes enables us to measure the similarity of the shapes
without any prior segmentation. The process of computing correspondence relies on the
ability to define invariants i.e properties common to the two shapes. Since correspon-
dence is between points on the shapes, these invariants should be computed from local
pointwise information. For well defined transformations such as rigid or linear, invariants
can be computed by simple algebraic manipulations. For general smooth deformations
however, invariants are associated with qualitative topological shape properties. In order
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to compute correspondence fields between shapes that are smooth deformations of each
other we are faced with the problem of computing qualitative invariants from sets of
points on the shapes.

A certain point on a shape has a location and in general also a tangent direction. A
complex of points and lines is formed by sampled shape points and their associated tan-
gent lines. Consider these complexes from two shapes when the points are in “perceptual
correspondence”. Note that a certain line in one complex intersects between two points
in exactly the same way in the two shapes. The order of the points a1 . . . a4, b1 . . . b4 is
preserved as they are traversed e.g clockwise and so is the order of the line directions.

Fig. 1. Two point-line sets with the same topological type.

Fig. 2. A voting matrix with rows and columns corresponding to the points on the two shapes is
updated whenever two 4-point-line complexes have the same topological type. The exact scenario
is displayed for the example in figure 1.

The three components:

point order, line direction order, and relative intersection of the lines and the
points in a complex

define the topological type of the point-line complex. By defining the leftmost point to
be the first point, we get a canonical ordering of the points.

It should be noted that this definition of invariants actually defines the class of
smooth transformations that relate equivalent shapes. This class will contain any linear
transformation of shapes that preserves orientation of points and lines, i.e. any linear
transformation associated with viewpoint changes and planar shapes.
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Point to point correspondence between two shapes can now be computed in the
following way:

• Points are sampled equidistantly on the shapes A and B and every four point
combination a1 . . . a4, b1 . . . b4 is selected.

• Whenever two sets of 4-point combinations have the same topological type, the
matching table is updated by one vote for the correspondences a1 ↔ b1 . . . a4 ↔ b4,
figure 2.

• Unique correspondences are computed by applying the greedy algorithm to the final
matching table:
1. The maximum entry of the voting table is found and correspondence is declared

between the points in the shapes A and B representing this entry.
2. The row and column of this entry are deleted from the table.
3. Repeat from 1.

This is essentially a discrete geometry version of the geometric hashing algorithm of
[13] where topological type index replaces the quantized affine coordinates of the fourth
point in the basis of the first three. By basing the index on qualitative geometric proper-
ties the bins of geometric hashing are defined generically and we avoid the sometimes
arbitrary choice of defining the bins in based on metric or affine coordinates.

Figure 3 shows an example correspondence field found after applying this algorithm.
Computing the voting matrix, in geometric hashing based shape correspondence, can be

Fig. 3. The full set of correspondences computed between two frames.
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formulated very efficiently as a matrix product [6]. The rows in these matrices actually
correspond to the “shape context” vectors of [1] which have been recently applied to
shape matching with considerable success.

3 Key Frame Based Action Recognition

The correspondence field that is computed from the shape matching algorithm contains
all the information about the relations between image A and image B. If A and B are
images with a well defined deformation between them, ideally this will be captured by the
correspondence field. Let pa

1 . . . pa
n and pb

1 . . . pb
n be the coordinates of the corresponding

points in image A and B respectively and T the class of transformations that, we know a
priori, defines the relation between A and B. The decision that A and B are related by a
member of this class of transformations can be based on the magnitude of the residual:

min
T∈T

n∑

i=1

||pb
i − T (pa

i )||2 (1)

It is important that the class of deformations is chosen to match the expected deformations
expected. If it is chosen too large it may easily generate false positives by deforming
images outside the class of interest. The class of transformations, T, will obviously
be problem dependent. In our case we want to identify a specific pose for a certain
person at different time instants. The transformations should then reflect the projected
image shape variation between the different instances. This transformation will obviously
be quite complex, involving motions of several body parts. As a simple preliminary
measure we tried various linear transformations: pure translation, similarity and affine
transformations. Pure translation gave the best results in terms of discriminating image
frames. Therefore the transformation used is simply:

T (pa
i ) = pa

i + t

and the matching distance was computed as the residual:

min
t

1
n

n∑

i=1

||pb
i − pa

i − t||2 (2)

Evaluation of the complete algorithm of action recognition was made on a 30 sec se-
quence of tennis. The sequence contains forehand and backhand shots and mainly the
player in a stand-by position.

The player was coarsely tracked automatically and a region of interest for each frame
specified. In the upper half of this region Canny edge detection was applied. The edges
were traced and subsampled to every fourth pixel. At each sample, the tangent direction
was estimated. The number of edge points varied, in general, between 100 − 200. No
effort was made to delete the sometimes substantial number of background edges which
occur in some frames. The upper half of the window is chosen as the upper body follows
more consistent and distinctive patterns than the legs during different tennis strokes.
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A specific frame (251 of the sequence) was selected as the key frame and the matching
algorithm was applied to all frames in the sequence and a matching score was computed,
see figure 4. There are clearly 9 local minima in the distance scores and each of these
corresponds to the start of a forehand stroke as displayed.

4 Tracking by Point Transfer from Representative Key Frames

Motion capture requires body locations to be tracked over time, generally in multiple
views in order to compute 3D representations of the body motion. In commercial and
medical contexts this requires fitting visible markers to the person’s body and recording
with multiple calibrated cameras. Some attempts have been made to automate the track-
ing of body locations, notably rotational joints [16,12], but no general solution has so
far been presented. The problem is, of course, very difficult. This is partly because the
points of interest are skeletal and are embedded within the body and a surface protrusion
is all that is seen. This surface projection is therefore view dependent. Nevertheless, we
believe that a crude estimation of these point can be tracked automatically. If this is done
in multiple views, the 3D reconstruction problem will be overconstrained, allowing for
filtering of tracking errors to some degree.

Without specific body markers, the projected image point to be tracked, for example
the knee, may not have very much special local information to allow its determination.
However, if correspondence for edge elements of the projected body has been computed
between the image frame to be tracked and some frame in which the body locations
are known a priori, this can be used to compute the body locations in the actual frame.
This transfer of body locations could, of course, be from the previous frame in which
they have been previously determined. This would imply, though, a standard open loop
tracker where errors are propagated. Consider instead that a set of key frames of body
postures are defined. In each of these frames the body locations are determined, most
probably manually, at an earlier stage. Then if any frame in the actual sequence matches
to at least one key frame, body locations can be transferred from the matched key frames.
Thus a closed tracking loop has been established and tracking errors do not propagate
indefinitely. Figure 7 illustrates how the correspondence field in figure 3 can be used
selectively around specific body locations in order to transfer interior points between the
two frames.

Tennis, as well as sports in general, is very repetitive. It consists of a limited repertoire
of actions and often seen from a limited number of camera angles. Sports events are
therefore an ideal environment for exploiting the key frame based mapping. In order
for this to be possible, every frame in a sequence has be sufficiently close to some key
frame. The action recognition presented in the previous section is a promising indication
that this should be possible. We have demonstrated that it is possible to find the forehand
shots in a sequence. This can be seen even more clearly from figure 5. The figure displays
the results of calculating the similarity measure between a specific forehand (503-514)
and all other forehand frames. For the illustrated matrix the darker the shade the lower
the distance score. The repetitive nature of the forehand shot is clearly seen in this matrix
and it also indicates that finding a specific key frame for all frames in the sequence should
be possible.
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Fig. 4. Classified forehands for the sequence of the woman playing tennis. The displayed fore-
hands correspond to the local minima of the distance scores.
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Fig. 5. Distance scores between forehand frames 503-514 and all other forehands.

In figure 6 the distance scores for frames 503, 507, 510, and 513 to the frames in the
forehand sequence 130 -140 are plotted. From this figure we can easily find the closest
key frame for each frame. They appear in the correct order 503, 507, 510, and 513 as the
frames 130-140 are traversed. In general an ordering of the key frames can be imposed
which would simplify the key frame selection even further.

Fig. 6. Distance scores for frames 503, 507, 510, and 513 to all frames in forehand sequence 130
- 140.

5 Body Joint Localisation

In this section we focus on how the marked body locations can be transferred from the
key frame to the image. The discussion can be split into two distinct parts. The first part
describes how the body part locations are estimated just using the voting matrix V . In a
completely constrained environment with the key frame being more or less exact replica
of the image data this would probably be sufficient for successful localisation. However,
as our data is not from such a world (though admittedly from a highly structured one)
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it is necessary to add another level of sophistication to the localisation. The other part
is concerned with these issues. Priors are imposed upon the spatial arrangement of the
points and also upon the anticipated colour of the intensity patches surrounding certain
points. Crude tracking of the head and body regions is also implemented to give coarse
prior estimates of their position. This latter information is used to refine the voting matrix
V and to indirectly improve the estimates of the joint locations.

5.1 Point Transferral Using the Voting Matrix

Let pt
1, . . . , p

t
n and pR

1 , . . . , pR
n be the coordinates of the corresponding edge points in

the test image, It, and the appropriately matched key frame image respectively. In the
keyframe R the coordinates of the skeleton parts, PR

k , are marked manually (see figure
10). For the upper-body keyframe these locations correspond to the left and right hand,
elbow, and shoulders as well as the neck and the nose. These points are denoted by
{PR

k }K
k=1. Let Pk(t) be the location of the point corresponding to PR

k in image It. It is
assumed that a simple local translation, vk(t), is sufficient to describe the transformation
of the points from the key frame to the image:

Pk(t) = PR
k + vk(t) (3)

For each PR
k a subset of the pR

i ’s is chosen as support for this point from which vk(t)
is estimated, figure 7. This estimation is computed robustly to offset the influence of
outliers.

Fig. 7. Examples of selective correspondences used for point transfer from key frame to actual
frame.

Coarse Head and Body Tracking: Updating the Voting Matrix. The voting matrix
V does not always give the correct correspondences. Thus if extra information can be
obtained from other sources to adjust V that would be beneficial. An obvious candidate
is to use the output of a conventional tracker.
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Attempts to achieve automatic full body tracking on long sequences either using 3D
fully articulate models or 2D appearance based ones have not meet with great success.
However, tracking with less ambitious goals, for instance head and body localisation
using colour information, have had very presentable results [7]. It was therefore decided
to aid the matching process by tracking the head and body regions of the person. Each
region is modelled as a quadrangle and a standard particle filter implemented for the
tracking [2]. The likelihood function is based upon a sum-of-squares distance measure
between a colour template and the image data. Examples of the localisation achieved
are shown in figure 8.

Fig. 8. Output of the coarse head and body tracker when applied to the tennis sequence. This
output can be used to guide the correspondences computed. It is relatively easy to successfully to
achieve this level tracking for long sequences.

With the successful completion of this part of the tracking the new information is
incorporated into the voting matrix V . This is done as follows:

Set V (pR
i , pt

j) = 0 if pR
i and pt

j are not close to the corresponding lines in
corresponding matched quadrangles.

The above is not implemented for every point, but only for those points which are
anticipated to have a consistent position with respect to the matched regions. For the
upper-body example this corresponds to the points of the head and the shoulders and
the torso. The points demarking the arms are omitted due to their varying relation to the
body and head. The updated matrix can then be used to obtain estimates, {yk(t)}, of the
interior points using the process previously described.

5.2 Incorporating Prior Constraints

The yk(t)′s obtained will not in general be all inliers. This is mainly due to the fact
that in the image data the edge information may be sparse in some areas. Numerous
examples of this phenomenon can be seen in the pictures in figure 11 , especially with
regard to the feet and the right arm. (Note the time component will be dropped from the
subsequent notation as we are dealing soley with matching to individual images.)
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Spatial Constraints. A set of representative key frames has been chosen as being
sufficient to represent the different topological shapes seen in a forehand stroke. Each
key frame in the tracking process will be matched to an anticipated range of images. In
these images the interior points should have a similar arrangement to the marked points
in the key frame. This constraint can be mathematically stated using Scaled Prismatic
Models of [14]:

Pk+1 ∼ f(Pk+1|Pk) = Pk + lk(cos(θk) sin(θk))T (4)

for k = 1, . . . , K − 1 and where lk ∼ N(lRk , σ2
k), θk ∼ N(θR

k , δ2
k). P0 follows the

distribution p0(P ). Equation (4) corresponds to a state evolution equation. The estimates
{yk} can be viewed as following the observation density:

yk+1 ∼ g(yk+1|Pk+1) = (1 − ρ)N(Pk+1, γ
2I2×2) + ρUn(A) (5)

where 0 ≤ ρ ≤ 1 and Un(A) is a uniform distribution over a region A. From the chain
model described and the measurements it is desirable to obtain estimates of the body
joint locations from the expected value of the smoothing distribution:

P̂1:K = E{p(P1:K |y1:K)} (6)

where y1:K = (y1, . . . ,yK) and P1:K = (P1, . . . , PK).

Finding the Smoothing Distribution. Given the non-Gaussian nature of the state evolu-
tion equation and the observations, a Monte Carlo algorithm is chosen to produce random
samples from the smoothing density of equation (6). A procedure as described in [10]
is used. It is assumed that a weighted set of particles {P

(i)
k , π

(i)
k }N

i=1 for k = 1, . . . , K
which are drawn approximately from p(Pk|y1:k), have been obtained by applying a
particle-filtering technique. Smoothing is then performed by backward simulation as
follows:

– Start with the final particle set {P
(i)
K , π

(i)
K } and choose a particle P̃K = P

(i)
K with

probability π
(i)
K .

– The positions of the nodes of the chain are now chosen in reverse order. New weights
are calculated

• π
(i)
k|k+1 ∝ π

(i)
k f(P̃k+1|P (i)

k )
and selections made

• Choose P̃k = P
(i)
k with probability π

(i)
k|k+1.

The above is repeated for k = K − 1, . . . , 1 to obtain (P̃1, P̃2, . . . , P̃K) an approx-
imate realisation from p(P1:K |y1:K).

This procedure results in choosing the particles that are simultaneously consistent with
the state evolution equation and the measurements. When applied to enforce the spatial
chain constraints isolated outliers are spotted and corrected accordingly, as shown by
figure 9.
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Fig. 9. Applying the spatial constraints allows the rectification of the position of the right elbow.

Colour Constraints. In the keyframe each manually marked point PR
k has an inten-

sity patch associated with it. For example in figure 11 the left foot is surrounded by a
predominantly white patch. This information can also be used to constrain the potential
positions for the body joint locations and help to compensate for the cases when the
edge data is insufficient and/or when the point matching partially fails. We exploit the
information as follows.

An L × L template patch, CR
k , of RGB data centered at PR

k is extracted from the

key frame. For each particle P
(i)
k a sum-of-squares distance score is made between

the template and a patch from It centered at P
(i)
k to obtain a measurement z

(i)
k . This

measurement is turned into a probability:

p(z(i)
k |P (i)

k ) = exp−λ0z
(i)
k (7)

The observation density equation (5) has to be updated to take account of this new
measurement:

g′(yk, z
(i)
k |P (i)

k ) = g(yk|P (i)
k )p(z(i)

k |P (i)
k ) (8)

Particle filtering now results in each of the particle sets approximating p(Pk|y1:k, z1:k)
and the smoothing algorithm with samples drawn from the appropriately amended
smoothing density.

Particle Filtering + Importance Function. A few words must be made with regard
to the implementation of the particle filter and obtaining the initial particle sets. It is
well known that the use of importance sampling greatly increases the efficiency of the
filtering process. The first problem is to find an initial particle set {P

(i)
0 , π

(i)
0 } that is

an accurate representation of p(P0|y0, z0) given that p(P0) is typically a broad uniform
distribution. Particles are placed in the vicinity of y0. However, it is not guaranteed
that y0 is an inlier, therefore the search must be wider. This is achieved initially by
considering each yk as an inlier and drawing samples from p(y0|Pk = yk), which can
be calculated from state evolution equation. Also in each keyframe the line joining PR

k

to PR
k−1 defines an intensity profile. In the image if each yk is considered as an inlier

then a search can easily be performed to find the yk−1 that allows the best replication
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of the corresponding keyframe intensity profile. More particles are placed in this area.
The weights π

(i)
0 are updated appropriately to take into account the bias introduced. At

each subsequent step the importance functions are normal distributions centred at yk

and the output of the profile intensity matching. ρ1 of the particles are propagated using
the state evolution equation while (1 − ρ1) are chosen using the importance functions
where 0 ≤ ρ1 ≤ 1.

6 Results

The techniques described were implemented on a forehand stroke that had been seg-
mented out from the tennis sequence using the methods in section 3. The frames 130–140
were used as the test data. Hand-drawn key frames were constructed by tracing out the
silhouettes of the tennis player from the frames 503, 506, 509 and 512. The resulting
key-frames for the upper-body are shown in figure 10. These key frames encompass the
range of topological types seen in a forehand stroke. However, the frame rate of the data
is only 25Hz and the motion of the arm can be quite rapid in the middle part of the stroke.
Thus for a different forehand we are quite likely to see images that are inbetween the key
frames as the camera is synchronised differently with the test stroke to the key frame
stroke. However, the matching process combined with the colour information partially
compensates for the differences between the key frame and the data. The upper and lower
body are treated separately, with the matching and the point transferral being computed
independently. The key frame with the lowest distance score to the image frame was
used to implement the point transferral. This search was also guided by a simple Markov
chain to reduce the computational aspect and also to prevent inappropriate key frames
being chosen.

Fig. 10. Hand drawn key frames plus the manually marked interior points. These are the key frames
used for matching to the forehand sequence.
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Fig. 11. Final estimates of the joint locations of the skeleton. Each point is displayed as a distinct
shape. The edge data used in the matching process are also displayed. The numbers displayed
correspond to the frame number of the sequence and to the matched key frame displayed in figure
10.
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Finally a note must be made about about how the parameters of the state evolution
equation and the observation were set. As of yet no coherent strategy has been developed
to answer the questions how many key frames are needed and to which range of poses
can a key frame be matched. Thus the parameters were set by hand upon the anticipated
answer to the latter question and were set to allow a quite a great deal of variation. Ideally
these should be learned from training data. However, this awaits the decision whether it
is better to add a key frame to the database of key frames or to improve the matching
process. Inspection of the results obtained in figure 11 show very promising results on
a very challenging sequence.

7 Conclusions

This paper presents a shift in the traditional approach to the tracking process. It is
motivated by the desire to create a closed loop system. This is achieved by being able
to recognise specific poses which correspond to stored key frames in which body joint
locations have been previously defined. The matching process based upon the concept
of topological type is the machinery that allows this approach to work. To improve the
robustness of the point transferral, the spatial relationship of the body points and colour
information is exploited. Experimental evidence has been presented which displays the
power of our approach to segment out specific actions of interest, ie a forehand stroke
and then to localise the body points in these highlighted frames. Therefore the need
for explicit initialisation of a complicated model has been by-passed. Errors obtained
in one frame do not propagate to the next frame. Obviously a number of issues remain
unanswered and should be subject to further research. How many key frames are needed
for each stroke? Can generic key frames be defined that can be matched to different
tennis players? Can the parameters for the smoothing process be learnt systematically?
What range of actions can be successfully captured by this process? We have so far
demonstrated that four key frames can be used to map most of the body locations
in a sequence of a forehand stroke to their correct positions. The ultimate number of
keyframes necessary to map correct body locations in a whole tennis game remains to
be determined. The option of selecting keyframes as a collection of body parts will also
be investigated. In this way multiple keyframes can be generated by combinations of a
limited set of parts.
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