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Abstract. The propose of this paper is to introduce a new regu-
larization formulation for inverse problems in computer vision and
image processing that allows one to reconstruct second order piece-
wise smooth images, that is, images consisting of an assembly of
regions with almost constant value, almost constant slope or almost
constant curvature. This formulation is based on the idea of using
potential functions that correspond to springs or thin plates with
an adaptive rest condition. Efficient algorithms for computing the
solution, and examples illustrating the performance of this scheme,
compared with other known regularization schemes are presented as well.

Keywords. Edge-preserving regularization, image restoration, segmen-
tation, anisotropic diffusion.

1 Introduction

In recent years, several methods for Edge-Preserving Regularization (EPR) for
inverse problems in computer vision and image processing, have been published.
These EPR methods are based on potentials that grow at a slower rate than
quadratic ones. These methods have demonstrated their performance in detect-
ing outliers in the data and reconstructing piecewise smooth images. The defi-
nition of piecewise smooth, however, has in most cases meant “almost piecewise
constant”, which means that the image can be represented as an assembly of
regions such that inside them the gradient is close to zero. In the regularization
framework, given the observed image g, the regularized solution f is computed
as the minimizer of an energy functional U. Given a good initial guess for f,
efficient algorithms for computing a local minimum have been reported in the
literature. In spite of the success of robust regularization methods, there are still
open important problems; in particular, the definition of piecewise smooth im-
ages has not been extended successfully to include regions with almost constant
slope (second order smoothness). As a result, regions with constant slope are
reconstructed with a “staircase” effect.

The purpose of this paper is to introduce a new formulation for energy poten-
tials that allows one to reconstruct images with second order piecewise smooth-
ness. In addition, efficient algorithms for computing the solution are presented.
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The organization of the paper is as follows: section 2 presents a review of the
EPR techniques based on robust potentials. In order to clarify the behavior of
first order robust regularization an analogy with a Weak Spring System (WSS)
is used. We show that this model has limitations for representing potentials for
high order EPR.

In the third section, the new potentials for second order EPR are introduced.
For first order potentials, the corresponding analogous model is a spring system
with adaptive rest condition (ARC); we show that for this case, there is an
equivalence between ARC and WSS potentials; however, ARC potentials can
naturally be extended to high order EPR potentials, which do not have a direct
representation in the WSS model.

Minimization algorithms are presented in section four and in section five, the
performance of the proposed ARC potentials is demonstrated by experiments in
both synthetic and real data. Finally, our conclusions are given in section six.

2 Robust Regularization
2.1 Statement of the Problem

The problem of reconstructing an image ffrom noisy and degraded observations
g given the following model of the observations:

~

9=F(f)+n, (1)

where 7 is additive noise and F' is (in general) a non-linear operator that is
assumed to be known, is an ill posed problem. Therefore, regularization of the
problem is necessary. This means that, prior information or assumptions about
the structure of f need to be introduced in the reconstruction process. The
regularized solution f* is computed by minimizing an energy functional U:

§* = axgmin U (/)
where U is of the form:

U(f) = D(f,9) + AR(), (2)

The first term in () establishes that the reconstructed f should be consistent
with the data g and the second term imposes a penalty for violating the prior
assumptions of piecewise smoothness. The relative contribution of each term to
the global energy is controlled by the positive parameter .

2.2 The Homogeneous Spring System

In the framework of Bayesian regularization, the data term in () is chosen as
the negative log-likelihood and the prior constraints are incorporated in the form
of a prior MRF model for f [I], so that the regularization term R in () takes
the form of a sum, over the cliques of a given neighborhood system, of a set of
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“potential functions” supported on those cliques. One may take for instance as
the neighborhood N of a pixel r its 8 closest neighbors:

Ny, ={s:|r—s| <2}

and cliques of size 2 (r, s) that correspond to horizontal, vertical and diagonal
pixel pairs, where r = (x,y) represents a site in the pixel lattice L. A quadratic
regularized potential is obtained by assuming that 7 corresponds to Gaussian
noise and choosing quadratic potentials over the first neighbor pairs:

Un(f) —Z{|F(f>r—gr|2+; 3 dm|fr—fs|2} (3)

r sEN,

with d,s = |r — s|~!. Functional (@) corresponds to the internal energy of the
physical model of a Homogeneous Spring System (HSS). The HSS model is
equivalent to a system of particles located at the sites of the pixel lattice, so
that the vertical position of each particle is represented by the gray level of each
pixel. Eq. (@) corresponds to the energy of the complete system where (when
F is the identity) each particle f, is connected by means of springs with the
observation g, and with its neighboring particles. The cost functional () does
not preserve edges and will produce an over-smoothing of the real edges of the
image.

2.3 The Weak Spring System: Robust Regularization

To alleviate that problem, there have been proposed potential functions for the
regularization term that allow edge preservation, based on the idea of a breakable
spring, that is, if the potential energy of a spring exceeds a given threshold 8, then
the spring must be broken [2] or weakened [3][4][5][6]. To achieve this behavior,
an auxiliary variable w than acts as edge (outlier) detector is introduced; then
the potential takes the form:

p(fr = fs,wrs) = wrs(fr — f8)2 + W (wrs), (4)

where w,.; is associated to each pixel pair (r, s), and ¥ is a potential function that
controls an over-detection of edges. In the case of the breakable spring model
2], wys only takes the values {0,1}; on other hand, in the case of the WSS
model, w,s € [0,1], and is set close to 1 for (f,. — f5)> < 0 (where 6 is a given
threshold) and less that one otherwise. Black and Rangarajan [4] have shown
that the potentials of the weak spring model correspond to the cost function
for robust M-estimators. These potentials are, in general, non-convex and grow
at a slower rate than the quadratic ones. This method is capable of finding
the significant missing data of a noisy image and performing an edge-preserving
restoration. Furthermore, the explicit outlier detection formulation allows one
to incorporate additional constraints about the structure of the edge reject field
w [4]. For instance, one can penalize the “thickness” and the discontinuities on
the edges, at the expense of an additional computational cost.
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2.4 The Weak Thin Plate Model

The thin plate model [IJ3] is obtained when one uses as potentials, squares of
finite difference approximations to second derivatives:

AP fr = fg—2fr+ fs. (5)

The computation of A?f, involves cliques of size 3 (g,,s) that correspond to
horizontal, vertical and diagonals pixel triads (see figure 1).

Fig. 1. Cliques with triads of pixels

One could use the weak potential

2
p(A2f7"a qus) = [A2fr] Wars + ¥ (qus) )

as a second order edge-preserving potential; however, the results are not com-
pletely satisfactory, even for the reconstruction of piecewise constant images,
where the first order model presents an excellent performance. The observed ef-
fect consists in the “ramping” or interpolation of first order discontinuities. In or-
der to compute a second order solution, Geman and Reynolds [3] proposed to use
the reconstruction computed with the first order model [using p(f, — fs, wrs)] as
the starting point for the second order model. This improves the results, but still
presents some problems, because the outliers for the first order model (jumps)
do not correspond to the outliers for the second order one (large curvatures).
Thus, the weak second order model does not work properly in the edges defined
by jumps in the gray level (see section 5).

3 The Adaptive Rest Condition Potentials
(ARC-Potentials)

In this section, we introduce potentials for EPR that are based on the paradigm
of the Adaptive Rest Condition (ARC). The system we are proposing is based on
the idea of using quadratic potentials with a non-zero (adaptive) rest condition:

pare(ta (bt) = |t - ¢t|2 + ¢(¢t)7 (6)

where ¢; acts as the signed rest condition of the potential psy.. In Refs. [9][10] a
similar formulation is reported, in which ¢ are auxiliary variables introduced to
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minimize non—quadratic potentials by means of half—quadratic techniques—as in
Bl[4][5]. Here, however, we introduce the ARC potentials specifically to produce
a novel generalization to the second order case. In the first order case, in fact,
ARC potentials are equivalent to existing EPR potentials, as we show in the
next subsection.

3.1 Spring System with Adaptive Rest Condition (SARC)
Consider t = f,. — f, thus,

Parc(fr = fs; Ors) = |f7’_fs_¢)7‘5|2+¢(¢rs)7 (7)

Note that the desired behavior for the potential p,,. corresponds to choosing
¢rs close to zero for those values of f,. — fs that we want to smooth out, and close
to the value of f,, — fs for those values that are considered edges. @ is a given
function that penalizes rest conditions different from zero. Figure 2}(a) shows
the plot for a typical ¢, and the corresponding ARC-potential is shown in panel
B (b). As one can see the p,r. potential has a quadratic region (for [¢t| < 0.5)
and outside this region an outlier rejection zone. In following we show how to
choose the ARC and function @ in order to have the desired effect.

Fig. 2. (a) A typical rest condition ¢ (solid line) and the residual error ¢t = f,. — fs
(doted line). (b) ARC-Potential corresponding to |t — ¢|?, with ¢ plotted in panel(a).
Doted line: quadratic potential ¢

There are three possible strategies for choosing a spring system with ARC

(SARC):

1. Explicit analogical line process (SARC-AL). In this case, one introduces aux-
iliary variables [, and chooses ¢ = It and @(¢) = ¥ (¢/t) [see eq.(d)]. Where
¥ is a convex function. In this case, the SARC-AL potential corresponds to
a half-quadratic potential. For instance, if we use &(¢) = u (¢/t)2 , where p
is a positive parameter, one obtains the Ambrosio-Tortorelli[TT] potential:

Parc(t,1) = [t — 1t + p(1)%.

Note that in this case the optimal [ is always in the interval [0, 1].
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2. Explicit binary line process (SARC-BL). In this case [ is binary valued (I €
{0,1}) and @(t) = pV (t) where V is the Ising potential [1]:

“1ift=0
Vi) = { 1 otherwise. (8)

In this case, SARC-BL is equivalent to the breakable spring model [2].

3. Implicit line process (SARC-IL). In this case the ARC potential takes the
form:

pa'r'c(t) = |t - ¢(t)|2

where ¢ is a given function shaped as the one plotted in Figure 2. For
instance, if one chooses ¢(t) =t — /p(t), where p is a robust potential, we
have pgr.(t) = p(t), so that SARC-IL is equivalent to the robust potential
formulation.

Although SARC models are equivalent to existing EPR techniques, we can
obtain an extra benefit by using a combination of explicit and implicit line
detection [12]:

Pare(t1) = [t — 1(D)° + i(l)? (9)

where p is positive parameter and the product l¢(¢) is the ARC. The meaning
of the extra variable [ depends on the chosen function ¢. In order to illustrate
this combined formulation, one can assume that ¢(t) corresponds to the function
plotted in Fig. 2. In this case, for a small value of the parameter p and if |¢| <
0.5, one has that [ is equal to zero (by effect of the penalization term). On
the other hand, if |t| > 0.5, then ! will be close to one. As a consequence, I
represents an edge detector controlled by the function ¢. This allows one to use
¢ to represent prior constraints about edge location; for example, in the edge-
preserving regularization of optic flow, one may prevent edges from appearing
in regions with small gray-level gradient by setting ¢ = 0 in those regions [12].

3.2 Thin Plate System with Adaptive Rest Condition (PARC)

The greatest advantage of the ARC formulation is that it can be used to produce
a novel extension to the second order case, by defining thin plate potentials with
adaptive rest condition. These PARC regularization potentials have the property
of not just adapting their stiffness, but also changing their behavior to SARC
potentials at the edges of almost constant regions. This represents a significant
advantage over the half-quadratic plate model based on robust potentials [341J5]
7R 9 TOT3ITATH16]

We have two cases for the PARC model: analogical line process (PARC-AL)
and implicit line process (PARC-IL). In order to understand the PARC models,
we first introduce the PARC-AL model.

We note that (@) can be written as:

A2fT:A+f7‘_A_f’r (10)

where



Adaptive Rest Condition Potentials 119

A+fr:fq_fr and A_f’r:fr_fs (11)
(see figure 1).
Then, PARC potentials can be written in the general form:

_ 2
pparc(Agfr) = |A+fr - A fr - ¢r’ + ¢(¢r)a (12)
where the ARC ¢ should satisfy:

0 if |ATf <0, |A™f <@
b~ A~ f, if |ATf <0, |A™f] >0
") AT, if |AYf >0, |A™f] <6
A%f, if |[ATf >0, |A™f.|>0
where 6 is a given threshold. To obtain the desired behavior, one may represent

b as: ¢ = ¢ + ¢, where ¢.F, ¢, depend on AT f, and A~ f,., respectively,
and penalize ¢ and ¢, separately. Thus, (I2)) can be rewritten as:

pparc(D2F,) = |AY fr — A= fr — 67 — o7 > + () + (o)

One can now introduce “edge variables” I, = ¢ JAYf,. | l.s = ¢; JA™ fr, s0
that (IZ) can be written as:

pparc(fa l)qrs = |A+fr(]- - lqr) - Aifr(]- - lrs)|2 + Nkp(lqs) + ,ufw(lrs) (14)

This potential is quadratic on f for a given [ and satisfies the constraints (I3)
(see figure[3]). ¥(-) is a potential that penalizes an over— detection of edges, and
must satisfy the constraints:

1. ¥(t) > 0 Vt with ¥(0) = 0,
2. U(t) =w(-t).
3. U (t) =0V (t(f))/Of and W" (t) = 9?W (t (f)) /Of? exist.
Note that there is no closed formula for [, and [,;. Unlike the SARC-AL
model, in PARC-AL there is no guarantee that [ € [0,1].

(13)

3.3 PARC-IL Models

The implicit line process PARC model (PARC-IL) is generated by using ¢+ =
¢ (AT f.) and ¢~ = ¢ (A~ f,), where we use

¢(t) = t(1 =9 (1))

where 9 is chosen in a way such that ty(t) is close to ¢ for small values of ¢
and close to zero for large values of ¢ (we used v (t) = exp(—t?) in our exper-
iments of section IV). The edge penalization term takes in this case the form

1 {|A+fr|2 + |A’f,,|2} . Thus, the complete PARC-IL is given by

+ _
it = (2) -1 (3

2
+uflatn+|am sl
(15)
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where k is a scale parameter and the parameter p controls the granularity of the
solution, since small regions surrounded by edges will be penalized by this term
[13].

.\'_f" g
(8 sf +u R

§

¢ Wfiﬁfifﬁfg e
i

@rf | ofes
. .
1 N

Fig. 3. Desired behavior of the PARC potential. For ATf > 0 and A™f > 0 (0 is a
given threshold) the potential is quadratic. pare = ‘A7f|2 +pif AT > fand A™f
<0 pare = |ATF|* + pif ATf < fand A”f > 0 . Finally, pare = 21 if A*f > fand
AT f > 0, where p is a fixed cost.

4 Minimization Algorithms

4.1 Half-Quadratic Coupled Minimization Algorithms for
PARC-AL Models

In this case, the function to minimize is:

U(fJ)zz{[Fm gl
A Y ([0 = tp) - A £ 1))

q,SEN,.

@) + w<zm>])} (16)

where F' is a linear operator. The solution may be computed by a two—step
iterative minimization algorithm:

1. Quadratic minimization step: Update the restoration f *!(keeping [ fixed),
so that:

UGS, 10 < U T,
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2. Update the second order edge detectors [ (keeping f fixed), so that:
U(F 1) < UG,
and set t =t + 1.

For the special case ¥(l,,) = [2., (I0) is quadratic for f for a given [/, and
quadratic for [ for a given f. Thus, the alternated minimization of (@) is per-
formed by solving a coupled linear systems using any general algorithm as Gauss-
Seidel or linear Conjugate Gradient. We have found a very good performance
by alternating a single Gauss-Seidel iteration of each system. The experiments

of the figures BH(e) and BH(b) correspond to this simple case.

4.2 Adaptive Non-linear Conjugate Gradient Algorithm (ANLCG)
for PARC-IL Models

The cost functional with implicit edge detection is given by

v = {0, ol
# X (|l (BF) - amne (5F)

q,5€N,

2

rullars+1asf])] (a7

Note that U is differentiable, but non-quadratic in f, so a non-linear optimization
algorithm needs to be used to find a local minimum of U. We propose here a
modification to the Non-Linear Conjugate Gradient Algorithm (ANLCG), in
which the step size is adaptively varied. Additionally, in order to accelerate the
convergence rate, the algorithm introduces inertia in the descent. The algorithm
is:

ANLCG

Set n =1, 5y =0, fo equal to an initial guess, and go = G (fo)

Repeat until |g,| < e:

1. Sp = —Ggn + 671371—1
2. Compute the step «,, such that ensures energy reduction. i.e. U(f,+ans,) <
U(fn) (see below)
3. fnJrl = fn + QpSn,
n=mn++1.
4. g, =VU(fn)
_ I (Gn=Gn-1) }
5. B, = max {O, PLar— ,
where € € (0,1) is a small positive constant. For computing the step ay,
we propose an algorithm that uses an adaptive local search. This algorithm is
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inspired in the one used in the Quasi-Gauss-Newton algorithm with an energy
reduction constraint [I7]. ANLCG algorithm (Step 2) requires that «,, is ac-
cepted only if it guarantees a sufficient reduction in the energy U(f), that is ,
if

U(fn + ansn) < (1 =€) U(fa),

to achieve this we do the following:
Computation of «a,
Initially set a = 0.01,m = 0, and ¢ small enough (e.g. § = 107%).
2.1 a, =a
2.2 While U(fn, + ansn) > (1 — and) U(frn)
ap =apfc, m=0
2.3 m=m+1
2.4 if m > co
a=c3,, m=0
else
a=ay
Empirically, we have found that the values of parameters ¢; = 2, ¢ = 5 and
c3 = 3 and the initial step size a work properly. Note that since «,, ensures that
the energy decreases at every iteration, the convergence of algorithm ANLCG is
automatically guaranteed.

5 Experiments

In this section experiments (in both synthetic and real data) that demonstrate
the performance of the PARC potentials are shown.

5.1 Comparison with the Half-Quadratic Second Order Model

The first experiment is a comparison of the performance of the PARC models
with respect to other EPR model: the proposed by Geman and Reynolds [3].
The synthetic test image is shown in panel (a) in figure @} the noise corrupted
image is shown in panel (b). The test image was designed so that includes the
following kind of regions: piecewise constant (delimited by first order discontinu-
ities: edges), piecewise constant slope (second order discontinuities) and smooth
(non-planar) regions. Panel (d) shows the reconstructed (filtered) image com-
puted with a first order EPR model (the WSS). One can appreciate that WSS
models promotes constant piecewise restorations. Panel (d) shows the reconstruc-
tion computed with (in our knowledge) the only second order model reported
(see ref. [3]). This corresponds to the weak thin plate model (WTP). The used
potential function corresponds to the one reported in [7]. This potential has been
extensively used and has demonstrated its superior performance with respect to
other first order EPR potentials (see [4] []). As one can see, in spite of the
fact that the regions with constant and smooth changes in the slope are recon-
structed with an acceptable quality, the gray level steps are over-smoothed. This
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Fig. 4. (a) Synthetic real image. (b) Noisy data test image. Reconstructions computed
with: (c) the weak membrane potential,(d) weak plate potential, () PARC-AL and (d)
PARC-IL (see text).

Fig.5. (a) Noisy data test image. Reconstructions computed with: (b) weak plate
potential and (c) PARC-AL

well-known effect is generated because the WTP changes the jumps by ramps.
On the other hand, panels (e) and (f) show the reconstructions computed with
the proposed PARC-AL and PARC-IL models, respectively. As one can note, the
three different kinds of regions are reconstructed with high quality. The mean
squared errors for the reconstructions are: 6.65e-4, 5.04e-4, and 4.09e-4; for the
panels: (d), (e) and (f), respectively. The data were normalized to the interval
[0,1] and corrupted with uniform noise with amplitude equal to 0.2, the MSE
for the noisy data is 1.33e-2.
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In our experiments, PARC models also have shown better performance for low
signal to noise ratios. This is illustrated in figure[5. Panel (a) shows the corrupted
image with uniform noise (with amplitude equal to 0.7, that corresponds to
a MSE equal to 0.162). Panels (b) and (c) show the restorations computed
with the WTP and PARC-AL models, respectively. The MSE for the computed
restorations were 0.022 ans 0.004 for WTP and PARC-AL models, respectively.
In fact, as was noted by Geman and Reynolds [3], WTP model is unstable for
low SNR.

5.2 Comparison of PARC-AL vs. PARC-IL

In order to compare the relative performance of the two presented PARC models
(PARC-AL and PARC-IL), we performed the following experiment with a real
test image. In Figure[6l panel (a) is shown the cameraman picture corrupted with
gaussian noise with o2 =0.05. Panel (b) and (c) the reconstructions computed
with the AL and the IL model, respectively. The MSE were 1.5e-3 and 0.9e-
3 Corresponding details are presented in panels (d), (e) and (f). As one can
appreciate, the IL model performs a better restoration of the details. However,
the computational time is larger for the IL model: 15 secs. while the restoration
with the AL model took 3 secs. in a pentium III at 800 Mhz. based computer.
The computational time for the WTP model (results not shown) was of 23 secs.
We noted that for this case of high SNR, the restoration of the WTP model (with
MSE equal to 1.6e-3) looks very similar to the one computed with the PARC-
AL model. It should be noted that the convergence of the ANLCG minimization
algorithm, used in the PARC-IL case, can always be guaranteed, which is not
the case for PARC-AL; we have tested this last algorithm extensively, however,
and it never has failed to converge.

5.3 Second Order Anisotropic Diffusion

Refs. [18][I5] shown the relationship between robust potentials and anisotropic
diffusion. Following that work, one can get second order anisotropic diffusions
based on PARC potentials, for instance

FrHL = Jrhw Z Ppare(f)r, (18)
q,SEN,.

where pparc(f)r is given in ([IH), f© corresponds to the image in[G(a) and the step
size h is chosen small enough. Figure [7] shown images of a sequence computed
with this method. We use the same PARC potential than in the experiment of

figure[6.

6 Discussion and Conclusions

We have presented a new model for edge-preserving regularization, that allows
one to reconstruct second order piecewise smooth images. This model is based
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(e) (0

Fig. 6. (a) Cameraman picture corrupted with uniform noise. Reconstructions com-
puted with: (b) PARC-AL and (¢) PARC-IL. (d), (e), (f): corresponding details.

Fig. 7. Images of a sequence computed with an anisotropic diffusion algorithm based
on PARC-IL potentials

on the physical analogy of adaptive rest condition potentials (ARC). In order to
focus the paper on the characteristics of the ARC potentials, we dealt with the
problem of restoring noisy images, but their use can be extended to other image
processing and computer vision problems. We showed that the first order ARC
model —which has been used before — is equivalent to the well known adaptive
weak spring model, and hence, it has the problem of producing staircase-like so-
lutions in regions of constant slope; to overcome this problem, we propose here



126 M. Rivera and J.L. Marroquin

an extension that generates new second order potentials; we called these poten-
tials the thin plate model with adaptive rest condition (PARC). These PARC
potentials have the property of changing their behavior to a first order EPR po-
tential at the edges (steps in the gray level) of the image. As a result, regularized
cost functionals based on the PARC model are more stable and perform a better
restoration of edges and smooth regions, because PARC potentials extend the
definition of smoothness to include regions with almost constant slope.

We introduced two kinds of PARC potentials: the PARC with analog line pro-
cess (PARC-AL) and the PARC with implicit line process (PARC-IL). We found
that these families have specific advantages:

PARC-AL potentials generate a pair of coupled systems (in general, linear for
the restored image and non-linear for the auxiliary variables) that can be al-
ternatively minimized. A special case results from selecting a coupled quadratic
potential; in such case the resulting coupled systems are linear and can be ef-
ficiently minimized (in our case, we used the Gauss-Seidel algorithm in an al-
ternated scheme). This model can incorporate potentials that penalize specific
configurations of the auxiliary variable (for example the thickness of the edges;
see [AIT4[I5] for more details).

PARC-IL potentials are non-linear; in this case, the line process is implicitly
represented by a detection function that depends on the image gradient; for
minimizing the corresponding cost functionals, we proposed a modified Non-
linear Conjugate Gradient Algorithm, for which one can guarantee convergence
(at least to a local minimum). Experiments have shown that (in general) one
obtains better reconstructions with the PARC-IL model although at a higher
computational cost. An interesting open theoretical problem is to determine the
precise relation between PARC-AL and PARC-IL potentials, as has been found
in the case of WSS models.
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