Abstract
This paper considers the dynamic tree (DT) model, first introduced in [1]. A dynamic tree specifies a prior over structures of trees, each of which is a forest of one or more tree-structured belief networks (TSBN). In the literature standard tree-structured belief network models have been found to produce “blocky” segmentations when naturally occurring boundaries within an image did not coincide with those of the subtrees in the fixed structure of the network. Dynamic trees have a flexible architecture which allows the structure to vary to create configurations where the subtree and image boundaries align, and experimentation with the model has shown significant improvements.
Here we derive an EM-style update based upon mean field inference for learning the parameters of the dynamic tree model and apply it to a database of images of outdoor scenes where all of its parameters are learned. DTs are seen to offer significant improvement in performance over the fixed-architecture TSBN and in a coding comparison the DT achieves 0.294 bits per pixel (bpp) compression compared to 0.378 bpp for lossless JPEG on images of 7 colours.
Chapter PDF
Similar content being viewed by others
References
Williams, C.K.I., Adams, N.J.: DTs: Dynamic Trees. In Kearns, M.J., Solla, S.A., Cohn, D.A., eds.: Advances in Neural Information Processing Systems 11. MIT Press (1999) 634–640
Bouman, C.A., Shapiro, M.: A Multliscale Random Field Model for Bayesian Image Segmentation. IEEE Transactions on Image Processing 3(2) (1994) 162–177
Feng, X., Williams, C.K.I.: Training Bayesian Networks for Image Segmentation. In: Proceedings of SPIE. Volume 3457. (1998)
Luettgen, M.R., Willsky, A.S.: Likelihood Calculation for a Class of Multiscale Stochastic Models, with Application to Texture Discrimination. IEEE Transactions on Image Processing 4(2) (1995) 194–207
Pearl, J.: Probabilistic Reasoning in Intelligent Systems. 2nd edn. Morgan Kaufman Publishers Inc., San Francisco, USA (1988)
Chou, P.A.: Recgonition of Equations Using a Two-Dimensional Stochastic Context-Free Grammar. Visual Communications and Image Processing IV 1199 (1989) 852–863
Geman, S., Manbeck, K.: Experiments in Syntactic Recognition. Technical Report CICS-P-411, Division of Applied Mathematics, Brown University, Providence, RI 02912 USA (1994)
Adams, N.J., Storkey, A.J., Ghahramani, Z., Williams, C.K.I.: MFDTs: Mean Field Dynamic Trees. In Sanfeliu, A., Villanueva, J.J., Vanrell, A., Alquézar, R., Huang, T., Serra, J., eds.: Proceedings of 15th International Conference Pattern Recognition. Volume 3, Image speech and Signal Processing., IEEE Computer Society (2000) 151–154
Adams, N.J.: Dynamic Trees: A Hierarchical Probabilistic Approach to Image Modelling. PhD thesis, Institute for Adaptive and Neural Computation, Artificial Intelligence, Division of Informatics, University of Edinburgh, 5 Forrest Hill, Edinburgh, EH1 2QL, UK (2001) Available at: http://www.anc.ed.ac.uk/code/adams/.
Lauritzen, S.L.: Graphical Models. Oxford University Press (1996)
Geman, S., Geman, D.: Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. In: IEEE Transactions on Pattern Analysis and Machine Intelligence. Volume 6, no. 6. (1984) 721–741
Chellappa, R., Chatterie, S.: Classification of Textures using Guassian Markov Random Fields. In: IEEE Trans. Accoust., Speech and Signal Processing. Volume 33. (1985) 959–963
Crouse, M., Nowak, R., Baraniuk, R.: Wavelet-based statistical signal proccessing using hidden Markov models. IEEE Transactions on Signal Processing 46 (1998) 886–902
De Bonet, J.S., Viola, P.A.: A Non-Parametric Multi-Scale Statistical Model for Natural Images. In Jordan, M.I., Kearns, M.J., Solla, S.A., eds.: Advances in Neural Information Processing Systems 10. MIT Press, Cambridge, MA (1998)
von der Malsburg, C.: The correlation theory of brain function. Internal Report 81-2, Max-Planck-Institut für Biophysikalische Chemie (1981) Reprinted in Models of Neural Networks, eds. K. Schulten and H.-J. van Hemmen, 2nd. ed, Springer, 1994.
von der Malsburg, C.: Dynamic link architecture. In Arbib, M.A., ed.: Handbook of Brain Theory and Neural Networks. MIT Press (1995) 329–331
Montanvert, A., Meer, P., Rosenfeld, A.: Hierarchical Image Analysis Using Irregular Tessellations. IEEE Trans. Pattern Analysis and Machine Intelligence 13(4) (1991) 307–316
Hinton, G.E., Sallans, B., Ghahramani, Z.: A Hierarchical Community of Experts. In Bishop, C.M., ed.: Neural Networks and Machine Learning. Springer-Verlag New York inc. (1998)
Hinton, G., Ghahramani, Z., Teh, Y.W.: Learning to Parse Images. In Solla, S.A., Leen, T.K., Müller, K.R., eds.: Advances in Neural Information Processing Systems 12. MIT Press (2000) 463–469
Geiger, D., Heckerman, D.: Knowledge Representation and Inference in Similarity Networks and Bayesian Multinets. Artificial Intelligence 82 (1996) 45–74
Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An Introduction to Variational Methods For Graphical Models. In Jordan, M.I., ed.: Learning in Graphical Models. Kluwer Academic Publishers (1998) 105–161
Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data. John Wiley, New York, USA (1987)
Feng, X., Williams, C.K.I., Felderhof, S.N.: Combining Belief Networks and Neural Networks for Scene Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (2001) Accepted for publication.
Adams, N.J., Williams, C.K.I., Storkey, A.J.: Comparing Mean Field and Exact EM in Tree Structured Belief Networks. In: Fourth International ICSC Symposium on Soft Computing and Intelligent Systems for Industry. ICSC-NAISO Adademic Press (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Adams, N.J., Williams, C.K.I. (2002). Dynamic Trees: Learning to Model Outdoor Scenes. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds) Computer Vision — ECCV 2002. ECCV 2002. Lecture Notes in Computer Science, vol 2353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47979-1_6
Download citation
DOI: https://doi.org/10.1007/3-540-47979-1_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43748-2
Online ISBN: 978-3-540-47979-6
eBook Packages: Springer Book Archive