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Abstract. This paper introduces a new, stratiÿed approach for the
metric self calibration of a camera with ÿxed internal parameters. The
method works by intersecting modulus-constraint manifolds, which are
a speciÿc type of screw-transform manifold. Through the addition of
a single scalar parameter, a 2-dimensional modulus-constraint mani-
fold can become a 3-dimensional Kruppa-constraint manifold allowing
for direct self calibration from disjoint pairs of views. In this way, we
demonstrate that screw-transform manifolds represent a single, uniÿed
approach to performing both stratiÿed and direct self calibration. This
paper also shows how to generate the screw-transform manifold arising
from turntable (i.e., pairwise-planar) motion and discusses some impor-
tant considerations for creating a working algorithm from these ideas.

1 Introduction

Self calibration is the process of determining the internal parameters of a camera
directly from views taken by the camera without any a priori knowledge of the
scene, the camera, or the camera's motion. Calibration is said to be metric or
Euclidean when it matches \true" calibration (as measured using a standard
orthonormal coordinate system) up to an overall scale factor, translation, and
rotation. There are two major routes to performing metric self calibration. The
ÿrst route, which we shall refer to as direct self calibration, involves determining
calibration directly from a collection of views in a single conceptual step, typi-
cally by utilizing the Kruppa constraints and its variations. The second route,
which is known as stratiÿed self calibration, involves working in stages, ÿrst cre-
ating a projective reconstruction of the scene and cameras, then upgrading this
to an aþne reconstruction, and ÿnally upgrading to metric. Each method has
strengths and weaknesses: the stratiÿed approach seems generally preferable but
some direct approaches can be used in situations where stratiÿed approaches are
not possible.

In this paper, we introduce a new algorithm for stratiÿed self calibration
based on the recently-introduced concept of screw-transform manifolds [10]. We
also discuss how stratiÿed approaches are intimately related to direct approaches;
in particular, only one real-valued parameter separates the stratiÿed approach
given in this paper from the direct approach given in [10]. In this way, we show
that stratiÿed self calibration and direct self calibration are uniÿed by the single
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concept of screw-transform manifolds. Additionally, we give for the ÿrst time
an algorithm for generating the screw-transform manifold associated with pure
turntable motion (i.e., pairwise-planar motion). We also discuss several issues
regarding the eþective implementation of the algorithms given in this paper.

The archetypal direct method for metric self calibration, which also hap-
pens to be the ÿrst metric self-calibration algorithm published, is that due to
Faugeras et al. [6] based on the Kruppa constraints. The great strength of this
algorithm, besides mathematical simplicity, is its ability to determine metric
calibration directly from pairwise fundamental matrices. Any two overlapping
views taken by a camera induce a fundamental matrix between the views, and
with enough fundamental matrices the Kruppa constraints can be utilized. Thus
to perform self calibration it is only necessary to capture a series of pairwise-
overlapping views. In contrast, stratiÿed approaches require a series of views
that have enough mutual overlap to create an initial projective reconstruction of
the entire scene, including locating within the reconstruction the optical centers
of all the disparate views. Furthermore, stratiÿed approaches require that such
a reconstruction actually be created, which takes time and increases algorithmic
complexity and the possibility of failure.

Unfortunately, using the Kruppa constraints has important weaknesses. First,
there are certain critical motion sequences (see [15]) that do not contain enough
information to perform self calibration via the Kruppa constraints but do con-
tain enough information to be successfully handled through a stratiÿed approach.
Furthermore, by skipping the aýne reconstruction stage, direct approaches never
force all camera views to share a common plane at inÿnity. This can lead to a
metric calibration that satisÿes the pairwise Kruppa constraints for every view
but is nevertheless not simultaneously consistent with every view. Stratiÿed ap-
proaches ensure that every view shares a common plane at inÿnity when the
projective reconstruction is upgraded to aýne. This extra constraint can help
disambiguate the eþects of noisy data.

More information on stratiÿed approaches to self calibration can be found in
[11, 4, 2, 17, 8], among other sources. Numerous other approaches to self calibra-
tion also exist (e.g., [16]); however, in this paper we will mostly compare and
contrast our approach to the stratiÿed calibration algorithm introduced in [12]
which is based on the modulus constraint. We will be especially concerned with
diþerences between the implicit representation provided by the modulus con-
straint and the explicit representation provided by screw-transform manifolds.

In this section, we provide an overview of stratiÿed self calibration and introduce
terminology and concepts that will be needed later in the paper when discussing
the new calibration algorithm. In particular, we will discuss how the modulus
constraint can be used for stratiÿed self calibration. A thorough discussion of
the modulus constraint can be found in [11, 12].
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Our goal is to ÿnd the internal calibration of a camera from a series of m
views of a static scene. The camera captures the views from various positions
and orientations and its internal parameters are assumed to never change. The
internal parameters can be represented by an upper-triangular 3ÿ 3 matrix K.
Each view corresponds to a 3ÿ 4 camera matrix

ÿ̂i =
ÿ
Ĥi êi

þ
=

ÿ
KRi êi

þ
where Ĥi is a 3ÿ 3 matrix and Ri is a rotation matrix. By choosing the appro-
priate metric coordinate system, we can assume ê1 = 0 and R1 = I.

Under the stratiÿed self-calibration paradigm, the ÿrst step in ÿnding K and
ÿnding ÿ̂i is to ÿnd the camera matrices in a common projective basis. These
initial projective camera matrices will be labeledÿi and are related to the metric
camera matrices by a 4ÿ4 matrix þ representing a transformation of projective
basis:

ÿi =
ÿ
Hi ei

þ
= ÿ̂iþ (1)

We will refer to the initial set of camera matrices in the common projective
basis as a projective reconstruction of the scene. The usual approach to obtaining
this projective reconstruction (e.g., [1]) is to identify feature points in the scene
that are visible in more than one camera, then reconstruct the features in a
common projective basis (e.g., using fundamental matrices [3]), and then ÿnd the
projective camera matrices by relating the reconstructed features to their viewed
positions. However, using feature points in this way is not strictly necessary so
we will not refer to feature points explicitly in discussing self calibration; features
are not an implicit part of the projective reconstruction.

We can always choose the projective basis so thatÿ1 =
ÿ
I 0

þ
. Other authors

(e.g., [11]) have shown that, under the assumptions so far,þ must have the form

þ =

ý
K
ÿ1
0

þâ
>
a

ü
(2)

Diþerent values for the scalar a simply lead to diþerent overall scale factors
for the ÿnal metric reconstruction. Since metric reconstruction only involves
recovering the scene up to a scale factor, we can choose a = 1 for convenience.

The second stage in stratiÿed self calibration is to upgrade the projective
reconstruction to an aýne reconstruction. This is equivalent to ÿnding â in Eq.
2. The ÿnal stage is to upgrade the aýne reconstruction to metric by ÿnding K.
This latter step can be performed in a simple way by solving a linear system [7];
the hard step is ÿnding â during the second stage.

Pollefeys et al. [14] introduced an elegant method for determining â called
the modulus constraint. Notice that from Eq. 1 and the assumption a = 1 we get

Hi = ĤiK
ÿ1
þ êiâ

>

ei = êi

leading to
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H
1

1i
:=KRiK

ÿ1 = Hi + eiâ
> (3)

(where the notation x := y deÿnes the symbol x as representing the quantity
y). Since the right-hand side of Eq. 3 is conjugate to a rotation matrix, its
eigenvalues must all have the same modulus (i.e., absolute value) and this leads
to constraints on â. Similarly,

H
1

ij := KRjR
ÿ1

i K
ÿ1 =H1

1j(H
1

1i)
ÿ1 = (Hj + ej â

>)(Hi + eiâ
>)ÿ1 (4)

Here H1ij is conjugate to the rotation matrix RjR
ÿ1

i leading to additional con-
straints on â. Let H1ij (a) denote Eqs. 3 and 4, respectively, with â replaced by

a generic vector a 2 <3. By expanding the characteristic equation for H1ij (a)
and imposing the modulus constraint, each (i; j) pair, i < j, leads to a fourth-
order multivariate polynomial ÿij in the components of a that has the property
ÿij(a) = 0 for all a that generate legal H1ij matrices (i.e., matrices that meet the
modulus constraint). See [13] for the speciÿc form of ÿij . Throughout this paper,
we will use H1ij for H1ij (a) when context makes the intended meaning clear.

Note that ÿij represents a necessary but not suþcient condition on legal a;
many solutions to ÿij do not satisfy the modulus constraint. However, â has the
property ÿij(â) = 0 for all pairs (i; j). Thus â is given by

â = arg min
a2<3

X

(i;j)

jÿij(a)j (5)

If m is large enough (m ÿ 4), Eq. 5 has a single solution except for some
special collections of views called critical surfaces (e.g., see [5, 15]). When m = 3
there are a ÿnite number of solutions [12]. Eq. 5 can be solved using nonlinear
minimization techniques.

Deÿne the modulus-constraint manifold for the view pair (i; j) as

Mij = fa 2 <3 : all eigenvalues of H1ij (a) have the same modulusg (6)

We demonstrate in Section 3.1 that Mij is indeed a (2-dimensional) manifold by
providing a (piecewise) continuous mapping from <2 to Mij . See Fig. 1 for an
idea of what the various Mij look like.

In terms of modulus-constraint manifolds, â is contained in the intersection
of all the Mij . Assuming m is large enough, this intersection point is unique:

fâg =
\

i<j

Mij (7)

Finally, note that Mij is a proper subset of fa 2 <3 : ÿij(a) = 0g and thus ÿij
cannot deÿne the modulus-constraint manifold.
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Fig. 1. Three modulus-constraint manifolds sketched in a-space; their mutual inter-
section point is â. The grids demonstrate the underlying coordinates (ÿ; þ). The inset
shows a lone manifold with its single point of discontinuity (see Section 3.2).

In this section we show how a modulus-constraint manifold can be viewed as
a type of screw-transform manifold. Since screw-transform manifolds can be
generated explicitly (from their underlying parameterizations), this represents
an alternative method for determining â: generate the manifolds Mij explicitly
and ÿnd their mutual intersection point to get â as in Eq. 7.

Screw-transform manifolds were ÿrst described in the context of direct self
calibration. They are based on the observation that, when a camera with ÿxed
internal parameters captures views from two diþerent positions and orientations,
the transformation that the camera undergoes between views can be decomposed
as a screw transformation. A screw transformation involves a single rotation
around a ÿxed axis in space followed by a single translation parallel to the axis
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Algorithm

(1) If Fij is a cross-product matrix, the motion is pure translational. Projective recon-
struction can be directly upgraded to aÿne allowing â to be determined immedi-
ately.

(2) Otherwise, use (ÿ; þ) to þnd h
3
and l12 ÿ= h

1
þ h

2
. If det(Fij + F>ij) = 0 (or

is suÿciently small), the motion is turntable and the algorithm in Fig. 4 is used.
Otherwise, the motion is general and the algorithm in Fig. 3 is used.

(3) Use the algorithm in Fig. 5 to þnd H1ij from h
3
and l12.

(4) Use the algorithm in Fig. 6 to map H1ij to its corresponding position in a-space.

Fig. 2. Algorithm for mapping (ÿ; þ) into Mij .

(in fact, the translation and rotation can be done in either order and still yield
the same transformation). The axis is called the screw axis.

Let Fij denote the fundamental matrix between views i and j. By picking
a world coordinate system based on the screw transformation between views i

and j, it is possible to ÿnd a legal H1ij (i.e., one that is conjugate to a rotation
matrix) from Fij by picking two real numbers ÿ and þ. In this manner, each pair
(ÿ; þ) 2 <2 can be mapped to an a 2 <3 by using Eq. 3 or Eq. 4 (depending on
i and j). This is what makes Mij a manifold: it is an image of <2 embedded in
<
3 (see Fig. 1). In this context, we refer to <3 as a-space to emphasize that this

is the search space for the desired value of a denoted â. It is in a-space that the
modulus-constraint manifolds live.

In the case of general pairwise motion, the mathematics for mapping <2 to
H1ij is given in [10] and is also summarized below. An algorithm for mappingH1ij
to its corresponding position in a-space is given here for the ÿrst time. The com-
plete case of turntable motion (i.e., pairwise planar motion) is covered here for
the ÿrst time. The only other case, pure translational motion, does not generate
a screw-transform manifold; however, the existence of pure translational motion
between any two views allows the projective reconstruction to be immediately
upgraded to aþne without ÿrst determining â.

Screw-transform manifolds for general pairwise motion and for turntable mo-
tion are generated in diýerent ways; both algorithms are given in this section.
The two algorithms follow the same general approach: given the pairwise fun-
damental matrix Fij and a pair of real numbers (ÿ; þ) 2 <

2, ÿrst determine
which H1ij corresponds to the pair and then use either Eq. 3 or Eq. 4 to ÿnd the

corresponding position in a-space. The image of <2 under this mapping is the
modulus-constraint manifold Mij for the fundamental matrix Fij .

Recall that H1ij = KSKÿ1 for some rotation matrix S. The angle of rotation
for S will correspond to þ. The scalar ÿ will be used to determine where the
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Algorithm

(1) Let M be any invertible 3 ÿ 3 matrix such that F = [e]ÿM, where e is the left
epipole of F (i.e., e>F = 0).

(2) Let h
3
= (ÿIþM)þ1e.

(3) Let h
1
= (FSm)ÿ (FSh

3
), where [m]ÿ = FA.

(4) Find the unique null eigenvector (þ1; þ2)
> of

ÿ
FSh

1
; þFAh

3

þ
. Note that

(þ1; þ2)
> = ý(1=s1; ü=s3)

>, where s1h1 = h
1
, s3h3 = h

3
, and ý is an unknown

scalar determined in step (5).

(5) Solve the overdetermined system ýFSh
3
= þ1(1þ cos û)(h

1
ÿ h

3
) for ý.

(6) Let h2 = (ýmþ þ2 cos ûh3)=(ý sin û).

Fig. 3. Initial steps for generating the modulus-constraint manifold in the case of gen-
eral motion.

Algorithm

(1) Let m be given by [m]ÿ = (Fþ F>)=2 = FA.

(2) Let h2 = m= sin û.

(3) Let l12 = þ(FSm)=((1þ cos û) sin û).

(4) Use FSh
1
= 0 to ÿnd h

1
(i.e., ÿnd the null eigenvector of FS).

(5) Let h1 = (kl12k=kh1 ÿ h2k)h1.

(6) Find l13 from the fact that (FSþ(1þcos û)[h1]ÿ) is [ l13 l13 l13 ]
> up to arbitrary

scale factors on the rows.

(7) Let h
3
= R(l13; k)h1 where R(l13; ÿ) denotes the rotation matrix with rotation

axis l13 and angle of rotation 2úÿ.

Fig. 4. Initial steps for generating the modulus-constraint manifold in the case of
turntable motion.

vanishing point of the screw axis appears in the ÿrst view; this vanishing point
is the unique eigenvector of H1

ij that has a real eigenvalue. Thus each distinct
pair (ÿ; þ) will lead to a distinct H1ij and the mapping will be injective.

Since þ is an angle of rotation, þ can be considered a real number between
0 and 1 (just multiply by 2ý). Considering angles outside this range would be
redundant. This fact is very useful when searching for â in a-space. Similarly,
it is discussed in Section 4 how ÿ can also be considered a real number in the
range [0; 1]. Thus the modulus-constraint manifold can be considered the image
of [0; 1]ÿ [0; 1] instead of being the image of all of <2.

We now introduce some notation and formulas that will be used in the algo-
rithms and proofs of this section. Consider a pair of views for which we want to
ÿnd the screw-transform manifold. The camera used to capture the views must
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Algorithm

(1) Let M be any invertible 3 ÿ 3 matrix such that F = [e]ÿM, where e is the left
epipole of F (i.e., e>F = 0).

(2) Let ÿ = e>l12.

(3) Solve the following 6 ÿ 5 system to ÿnd the null eigenvector (þ; þa; 1)>, where
q = M>l12:

2
64
M(11) +M(22) +M(33) e> þ(1 + 2 cos ý)

Mh
3

eh>
3

þh
3

(l12)xqy þ (l12)yqx (þ(l12)yÿ; (l12)xÿ; 0) 0
(l12)xqz þ (l12)zqx (þ(l12)zÿ; 0; (l12)xÿ) 0

3
75
"

þ

þa

1

#
= 0

(4) Having determined a 2 <3 in step (3), ÿnd H1 using

H
1 ý= M+ ea

> (8)

Fig. 5. Algorithm for determining H1 from F, ý, l12, and h
3
.

have ÿxed internal calibrationK for the manifold to be deÿned. Assume that the
fundamental matrix F between the pair of views has already been calculated.

There exists a screw transformation of Euclidean space that takes the ÿrst
camera to the second one. Let ÿ denote the angle of rotation in the screw trans-
formation and let þ denote the amount of translation parallel to the screw axis.
Choose the Euclidean reference frame so that the screw axis is the z-axis and
the optical center of the ÿrst view is at position (1; 0; 0)> 2 <3. Let R denote
the tilt of the ÿrst camera relative to this frame of reference.

Let H = KR and let h1;h2;h3 2 <3 denote the column vectors of H, so
that H = [ h1 h2 h3 ]. It was shown in [10] that F has the form:

F = FA +FS (9)

F
A = [sin ÿh2 + þ cos ÿh3]ÿ (10)

F
S =

1ÿ cos ÿ

jHj

ÿ
(h1 þ h3)(h1 þ h2)

> + (h1 þ h2)(h1 þ h3)
>
þ
+

þ sin ÿ

jHj

ÿ
(h1 þ h3)(h1 þ h3)

> + (h2 þ h3)(h2 þ h3)
>
þ

(11)

Observe that FS = (F+F>)=2 and FA = (FÿF>)=2 because FS is symmetric
and FA is antisymmetric, so that these two matrices can be calculated directly
from F without knowing any of the other terms.

We will refer to the hi extensively in the algorithms and will also use the
notation h

i
. Finding h

i
means ÿnding hi up to an unknown scale factor. It is

typical in the algorithms to ÿnd h
i
and then determine the unknown scale factor

to get hi. Finding hi by itself can be useful because it dictates where hi projects
onto the image plane; h

i
can be thought of as the direction or image of hi.
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Algorithm

(1) If i = 1, then Eq. 3 can be used to ÿnd a. For instance, let E1 = [ej 0 0],
E2 = [0 ej 0], and E3 = [0 0 ej ], then solve

[H11j Hj E1 E2 E3 ][ 1 ÿ ax ay az ]> = 0:

where the 3ÿ3 matrices (H11j , Hj , etc.) are treated as column vectors in <9. Since
the null eigenvector will be found up to a scale factor, divide by its ÿrst component
to get the correct a = (ax; ay; az). The algorithm is done.

(2) Otherwise i 6= 1 and Eq. 4 must be solved for a; the remaining steps of the
algorithm are for this task.

(3) Deÿne qi and mi by [ q1 q2 q3 ] = H1ijHi and [ m1 m2 m3 ] = Hj . Let
v1 =m1 ÿm2, v2 = q1 ÿm2 +m1 ÿ q2, and v3 = q1 ÿ q2.

(4) Solve þ2v1 + þv2 + v3 = 0 for the scalar þ. One closed-form solution is þ =
(vx3v

y
1
þ v

y
3
vx1)=(v

x
2v

y
1
þ v

y
2
vx1 ). A least-squares approach is preferable.

(5) The equation to solve is now U + wa> = 0, where U = H1ijHi + þHj and
w = H1ij ei + þej . This can be solved as in step (1):

[U W1 W2 W3 ][ 1 a
x
a
y
a
z ]> = 0:

Fig. 6. Algorithm for determining a from H1ij for view pair (i; j) with i < j.

The ÿrst task in mapping a pair (ÿ; þ) to its corresponding position on the
modulus-constraint manifold Mij is to determine if the screw transformation
between views i and j is a pure translation, a pure rotation, or a general motion.
General motion is any case that is not one of the ÿrst two, and consists of both
a translation and a rotation. If Fij is a cross-product matrix (i.e., antisymmetric
with 0's on the main diagonal), then the motion is pure translation and no screw-
transform manifold exists. If det(FS) = 0 then the motion is pure rotation (see
Theorem 1 in Appendix A). Otherwise the motion is general.

The algorithm for mapping (ÿ; þ) into Mij is given in Fig. 2. Remember that
the values þ and ÿ in the algorithms are chosen arbitrarily from the domain;
every pair leads to a distinct, legal H1 and thus a distinct position on the
modulus-constraint manifold. The \true" values of þ and ÿ (those corresponding
to â) can only be determined by intersecting several diþerent modulus-constraint
manifolds to ÿnd â. If, for instance, þ were known a priori for some pairwise trans-
formation, then only ÿ would be chosen arbitrarily and the modulus-constraint
manifold would be one-dimensional, helping to narrow the search for â. If þ

could be restricted to a known range (e.g., if it is known that þ is small), then
the manifold might be a narrow ribbon, again helping to limit the search space.

The algorithms in Fig. 5 and Fig. 3 were discussed in [10]. Observe that in step
(2) of Fig. 3, if ÿ is the real eigenvalue of M then h

3
is not deÿned, leading to
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the point of discontinuity noted in Fig. 1. The algorithm of Fig. 6 follows from
Eq. 3 and Eq. 4 using straight-forward linear algebra. However, note that Eq.
3 and Eq. 4 only deÿne H1

ij up to a scalar; in the case where i 6= 1 (steps (2)

through (5)), Eq. 4 is ÿrst written H1ij (Hi + eia
>) = ÿÿ(Hj + eja

>)ÿ1 and
then ÿ is determined before ÿnding a.

In the algorithm of Fig. 4, step (2) follows immediately from Eq. 10 because
þ = 0 (for turntable motion). Step (3) requires the knowledge that jHj :=
det(H) = h1 þh2ýh3 = h1ýh2 þh3. The line l12 through h1 and h2 (as seen on
the image plane) is h

1
ý h

2
; scale does not matter unless this vector is used to

ÿnd h1 or h2, as it is in step (5). Step (4) follows from Eq. 11 with þ = 0 and the
knowledge that FS is rank 2. Step (6) is the most interesting of the algorithm:
Let Q = FS ÿ (1 ÿ cos ý)[h1]þ and observe that Qh1 = 0 (from step (4)) and
Qh3 = 0 (from Eq. 11). Thus Q annihilates any linear combination of h1 and
h3, giving Q the form [ l13 l13 l13 ]

> up to arbitrary scale factors on the rows.

For the experiments of Section 5, we used the voting algorithm described in
[10] to ÿnd the intersection point â of the modulus-constraint manifolds Mij ,
although other algorithms could conceivably be used.

It is important to realize that the equation h
3
= (üI ÿM)ÿ1e used to ÿnd

h
3
in step (1) of Fig. 3 can represent an ill-conditioned system. This means that,

under the right conditions, small changes in ü will lead to large changes in h
3
.

We now discuss how to condition the system.
Note that h

3
is the image of the vanishing point of the screw axis. If one

considers the viewing sphere around a camera's optical center, then the possible
locations of h

3
form a one-dimensional manifold on the surface of the sphere. As

ü goes towards inÿnity, h
3
approaches e from one direction along this manifold (e

is also on the manifold) and as ü goes towards negative inÿnity, h
3
approaches e

from the other direction. Once ü gets large enough (e.g., jüj > 10), h
3
is very close

to e and stops changing in any meaningful way. Thus we can assume ü 2 [ÿû; û]
for some ÿxed, suþciently-large û. This means we can treat ü as being a real
number in [0; 1], which then gets mapped into [ÿû; û]. In the turntable motion
algorithm of Fig. 4, ü is used in step (7) and is already assumed to be in the
range [0; 1].

The observation that ü has a ÿnite range provides a way to condition the
equation for h

3
. Before beginning the search for â, establish a map from [0; 1]

to [ÿû; û] that produces h
3
at approximately regularly-spaced intervals along

the one-dimensional manifold on the viewing sphere. The preconditioning map
in our implementation sends 40 equally-spaced \guide" numbers in [0,1] to 40
numbers in [ÿû; û] that yield evenly-spaced h

3
in <3. The remaining members of

[0; 1] are mapped by linearly interpolating the image of the nearest two guides.
A second consideration is that, since a-space depends on the choice of initial

projective reconstruction, it is possible for a-space to be so skewed that all the
modulus-constraint manifolds are approximately parallel, thus making it impos-
sible to determine their mutual intersection point â. This is an issue for any
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Fig. 7. Graphs from synthetic-data experiments.

stratiÿed calibration algorithm, but using screw-transform manifolds provides a
way out of the problem.

Because screw-transform manifolds are explicitly deÿned rather than implic-
itly, it is possible to generate positions on each manifold for the entire feasible
range of ÿ and þ values. Once each manifold is approximately sketched out, a-
space can be stretched using principal-component analysis to introduce greater
separation between the manifolds. When using the voting algorithm, a-space
needs to be renormalized in this manner after each zoom-in step, using only
those manifold points that lie in the current, reduced search region.

There is an inherent diþculty in presenting self-calibration experiments. The
diþculty arises because the accuracy of the self-calibration algorithm is highly
dependent on the performance of a variety of external modules. External mod-
ules are required for feature extraction, feature matching or tracking, fundamen-
tal matrix calculation, creating an initial projective reconstruction, and ÿnding
dense, pairwise image correspondences to produce detailed metric reconstruc-
tions.

Our goal in presenting experiments is to demonstrate general trends (in the
case of experiments with synthetic data) and to demonstrate the feasibility of
our algorithm (in the case of experiments with real cameras and views).

For determining fundamental matrices, we use the basic normalized algo-
rithm described by Hartley combined with a RANSAC technique. There are
more sophisticated algorithms for determining fundamental matrices and pre-
sumably these would improve self calibration. For creating the initial projective
reconstruction, we use a simple exhaustive search to ÿnd a \good" projective
reconstruction (i.e., one that is not ýat and elongated). We have not attempted
to recreate the sophisticated algorithm of Beardsley et al. [1] that allows for
extended projective scene reconstructions nor have we recreated the excellent
dense-correspondence algorithm of Koch [9].
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Fig. 8. Texture-mapped reconstructions of a calibration grid. On the right is an ortho-

graphic overhead view of the reconstructed feature points only.

We have chosen to demonstrate two trends using synthetic-data experiments.
First is the relationship between noise in feature locations and error in calibra-
tion; the graph on the left side of Fig. 7 shows the results. Each point on the graph
represents a single synthetic data trial. Each trial consisted of a calibration-grid-
like object (with 108 features) positioned at the origin and 6 cameras located
randomly in the ÿrst octant viewing the object. For each trial, a new internal
calibration was generated randomly using realistic parameters. Noise was added
to the projected feature points on each camera's image plane with a uniform
distribution. The maximum radius of the uniform noise distribution was varied
randomly between trials and is shown on the x-axis of the graph. For an error
metric, we used

error(K;M) = frob(K=frob(K)ÿM=frob(M))

where frob(M) is the Frobenius norm of matrixM. The results show a general
linear trend, with error approaching 0 as noise approaches 0.

The second experiment investigated how increasing the number of views could
reduce calibration error. The general procedure used was the same as in the ÿrst
experiment, and the results are shown on the right-hand side of Fig. 7. In the
graph, each vertical cluster of trials corresponds to a particular number of views;
the cluster around n corresponds to n views. The amount of noise added during
each trial is indicated by positioning of the trial to the left or right of the integer
number of views. Superimposed on the graph is a line connecting the mean error
for each cluster. This line demonstrates a general downward trend showing that
error is gradually reduced as the number of views is increased.

We provide two experiments that used real camera views. The ÿrst used a stan-
dard \calibration box" data set. No calibration information available from the
box (e.g., known distance between points) was used in the experiment. The dot
centers were extracted automatically and then matched automatically between
views using special-colored dots for reference. Thus the calibration box was used
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Fig. 9. Reconstruction of a building.

solely to obtain a set of highly-accurate feature correspondences between views.
Self calibration was performed using six views and results are shown in Fig. 8.
The reconstructed feature positions are near perfect: features on the same plane
in the original scene are on the same plane in the reconstructed scene, features
are equidistant in the reconstruction, and the three faces are orthogonal (see the
right-hand side of Fig. 8 for an overhead view showing features only).

The purpose of using such exact data was to demonstrate that the underlying
theory and models of the algorithm (e.g., pinhole-perspective projection) really
do apply to actual cameras and that self calibration and reconstruction can be
highly successful with real views provided the data is accurate.

The second experiment shows the reconstruction of a building. In the region
under consideration, the building has two orthogonal walls and a quarter-circle
annex nestled between the walls. Seven views were used in the reconstruction
and features were chosen by hand, mostly at the corners of windows. About 150
features overall were used. Note that hand-picked features are only accurate to
about 1 or 2 pixels at best (the original views were 1024ÿ 768 pixels in size).

The lower-right-hand corner of Fig. 9 shows an overhead view of the recon-
structed scene as features only; note the orthogonal walls and circular annex. A
texture-mapped reconstruction was created using Delauny triangulation of one
view; this is shown in the rest of Fig. 9. The texture is highly accurate when
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seen from near the original source view but is of course inaccurate in regions
of the building that have not been correctly reconstructed (e.g., the roof of the
circular annex, which was not visible from the ground).

6 Discussion

In this paper, we have shown how to generate the modulus-constraint manifold in
a-space using the mathematics of screw-transform manifolds and demonstrated
the use of these ideas in a new stratiÿed self-calibration algorithm. In both the
case of general motion and turntable motion, a (ÿ; þ) pair is used to ÿnd h1, h2,
and h

3
, which are then used to locate a position in a-space. However, by using

a third parameter ý along with ÿ and þ we can ÿnd h3 from h
3
, and thus we

can ÿnd [ h1 h2 h3 ] = H = KR. Since HH> = KK>, ÿnding H would place
direct constraints on the internal calibration matrix K, and this is the principle
behind the direct self-calibration method of [10].

Thus by using two parameters ÿ and þ we can generate the two-dimensional
modulus-constraint manifold in three-dimensional a-space, and by using a third
parameter ý we can generate a three-dimensional Kruppa-constraint manifold
in ÿve-dimensional K-space. These two manifolds are intimately related, but the
ÿrst technique allows for stratiÿed self calibration and the second for direct self
calibration.

If the amount ÿ of translation parallel to the screw axis is 0, then the pairwise camera
motion is equivalent to a stationary camera viewing a rotating turntable. Alternatively,
this kind of motion can be seen as translation and rotation of the camera parallel to a
ÿxed plane in space (e.g., a camera on a tripod which is kept at constant height and
repositioned on a level surface).

There is a simple test to determine directly from the pairwise fundamental matrix
F whether or not ÿ = 0:

Theorem 1. When þ is not a multiple of ý, ÿ = 0 if and only if det(F+ F>) = 0.

Proof. Note that the theorem involves the determinant of FS. Call the two cameras
involved camera A and camera B. Let eA and eB denote the epipole in camera A
and camera B, respectively. Clearly if ÿ = 0 then det(FS) = 0 because h1 is a null
eigenvector of FS (examine Eq. 11). Now assume det(FS) = 0 but ÿ 6= 0. In the logic
below we will be using a ÿxed-camera, rising-turntable formulation [10] with the optical
center at the origin of <3. Also, for vectors f ;g 2 <3, < f ; g > will denote both the
space spanned by f and g and the line on the image plane induced by this space. Let
u 2 <3 be a scene point whose projection into camera B, denoted by uB, is in the null
space of FS (i.e., FSuB = 0). Using Eq. 11, FSh3 ÿ= h1 þ h3 6= 0 so h3 corresponds to
a diþerent position in view B than uB. Since the epipolar line for uA is represented by
both < uA; eA > and by u>BF = u>BF

S+u>BF
A = u>BF

A = (mþuB)
>, we concludem,

uB, uA, and eA are all coplanar. Let q 2 <3 be an arbitrary scene point that projects
to the line < uB ; eA > in view A. So qA is a linear combination of uB and eA and thus
FqA ÿ= FuB ÿ=mþuB, implying qB lies in the plane <m;uB > which is also the plane
< uA; eA >. In other words, points visible on the line < uA; eA > in view A are also
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on that line in view B (after the screw transformation). If the planes < uA; eA > and
< h1;h3 > are identical then eA lies on the rotation axis < h1;h3 >, which can only
happen if ÿ is a multiple of þ. Since we assume this is not the case, < uA; eA > and
< h1;h3 > represent distinct lines in view A which intersect at a point vA. For some
scale factor k, v = kvA is a point on the rotation axis in space. vB is the projection
of v after the screw motion; in this case, the screw motion translates v by ý along the
screw axis, so under the ÿxed-camera formulation vB and vA are at diþerent positions
on the axis line < h1;h3 >. But vA is on the line < uA; eA > and so vB must also be
on this line, leading to the conclusion that vB = vA, a contradiction. ut
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