

I. Horrocks and J. Hendler (Eds.): ISWC 2002, LNCS 2342, pp. 236–249, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Towards a Modification Exchange Language
for Distributed RDF Repositories

Wolfgang Nejdl1, Wolf Siberski1, Bernd Simon2, and Julien Tane1, 3

1Learning Lab Lower Saxony, Expo Plaza 1, 30539 Hannover, Germany
{nejdl, siberski, tane}@learninglab.de

2Abteilung für Wirtschaftsinformatik, Neue Medien, Wirtschaftsuniversität Wien,
Augasse 2-6, A-1090 Vienna, Austria
bernd.simon@wu-wien.ac.at

3Universität Karlsruhe, Institut AIFB, Karlsruhe, Englerstr. 11, 76131 Karlsruhe, Germany

Abstract. Many RDF repositories have already been implemented with various
access languages and mechanisms. The aim of the EDUTELLA framework is to
allow communication between different RDF repository implementations. Part
of EDUTELLA is a Query Exchange Language (QEL) which can be used as
lingua franca to retrieve information from RDF repositories. This work shows
why we also need standardization of distributed modification capabilities. We
describe use case scenarios for annotation and replication services and use them
as guideline for our approach towards a Modification Exchange Language
(MEL) for distributed RDF repositories.

1 Introduction

In order to realize the Semantic Web, repositories storing metadata on information
and services need to become interoperable [0]. While a lot of query mechanisms and
languages currently do exist, the realization of the Semantic Web still requires a
lingua franca allowing interactions between repositories for the purpose of managing
metadata in a distributed manner.

The EDUTELLA framework aims to provide an RDF-based infrastructure which
allows services to exchange metadata via a peer-to-peer network [0]. A peer-to-peer
architecture goes beyond the boundaries of a classical client-server architecture. Each
node can act as a provider or consumer of information and services. The network as a
whole provides a discovery mechanism for finding relevant information and service
providers. This approach increases the flexibility of system design and contributes to
a more effective infrastructure for discovery, delivery and processing of information
and service [0]. We envision a peer-to-peer infrastructure as the primary infrastructure
for the Semantic Web, due to the increased heterogeneity of interoperable, high-level
services we expect on the Semantic Web.

Currently peer-to-peer networks are based on proprietary protocols. In order to
make heterogeneous peer-to-peer networks interoperable, gateways have to be
designed, which are based on open protocols with a well-defined semantic [0].
EDUTELLA already offers the possibility to refine and optimize information search
via protocols for querying metadata from RDF repositories. Hence, a first step

Towards a Modification Exchange Language for Distributed RDF Repositories 237

towards the interoperability of metadata repositories has been achieved by the
definition of a Query Exchange Language. However, this is insufficient when it
comes to annotation and replication within a network of distributed metadata
repositories, where also a standardized mechanism to communicate metadata changes
is needed.

In this paper we present a basic language designed for communicating metadata
changes between distributed RDF repositories. The paper is organized as follows: In
Section 2 use cases identifying our functional requirements are described. In Section 3
we discuss initial considerations, which are used as the basis for the design of our
proposed language. This language, the Modification Exchange Language, is described
in Section 4 as a possible means to standardize modification requests to RDF
repositories. Section 5 addresses related work, and Section 6 presents concluding
remarks.

2 Use Cases

To show why we need a standardized modification interface to RDF repositories we
present two exemplifying use cases [0]. The first use case illustrates the need for
replicating RDF repositories, a special instance of a general modification use case.
The second use case describes the need for a Modification Exchange Language in the
context of collaborative metadata authoring.

2.1 Integrated Systems for Teaching and Learning

In this use case two types of peers are involved: a learning management system
(LMS), which supports instructors in the process of delivering learning, and a
brokerage system (BS), which provides facilities for the exchange of learning
resources.

A BS for learning resources supports instructors preparing their courses, by making
educational content such as electronic textbooks, lecture notes, exercises, case studies,
etc. stored at dispersed content repositories available at single virtual node. The idea
behind brokerage systems is to support the re-use of learning resources and the
collaborative development of it. Examples for brokerage systems for learning resources
are: UNIVERSAL (http://www.ist-universal.org), Merlot (http://www.merlot.org), and
GEM - The Gateway to Educational Materials (http://www.thegateway.org). Where as
systems such as GEM and Merlot provide a loose integration of the various content
sources via hyperlinks, UNIVERSAL aims at providing a tighter integration allowing
the BS to grant and withdraw access rights at remote delivery systems based on learning
resource metadata stored on a central node.

An LMS typically holds various learning resources in a repository. Instructors
combine those resources to courses, which are then presented to their learners
according to a course curriculum. Some learning management systems, for example
Hyperwave’s E-learning Suite, enables the sharing of individual learning resources
among all instructors registered at a single system installation. Instructors can query
the repository of a single system installation in order to search for an appropriate
resource of one of their peers, which they would like to re-use in their own course.

238 Wolfgang Nejdl et al.

However, up to now an open exchange of learning resources beyond the
boundaries of single system installation is not available due to the lack of an
appropriate infrastructure. One requirement for such an infrastructure would be the
ability to replicate metadata describing learning resources of one LMS to a BS, so that
it can be cached there and queried directly by all users of the BS. Metadata replication
is a key element in such a usage scenario, which requires modification commands
such as insert, update, and delete to be executed at remote copies of an RDF
repository.

A survey [0] has shown that instructors have a clear preference towards opening
already existing learning resource repositories selectively compared to redundantly
uploading and managing their learning resources onto a central server. As a result,
brokerage systems such as UNIVERSAL are aiming at making the metadata of
dispersed learning resources available without requiring instructors to upload
resources to a central server.

Integrating an LMS with a BS creates a peer-to-peer network, where the
combination of both types of peers creates a new system with an added value.
Whereas an LMS provides basic functionality for managing learning resources, a BS
enhances this functionality by providing means for specifying usage conditions of the
learning resources offered. In order to realize such a scenario of integrated services,
brokerage systems are required to include the metadata describing learning resources
stored at distributed LMS, so that it can provide customized offers of learning
resources to remote instructors [0, 0].

Fig. 1. Integrating LMS and BS by means of metadata replication

Figure 1 shows users interacting with an LMS and a BS using the LMS for providing
general metadata on learning resources, for example title or educational objective,
whereas the BS is used for specifying offer-related information such as price or usage
restrictions. One can envision an extension scenario, where multiple brokerage

Learning
M anagement

System

Broke ra ge
Syste m

m e tad ata

re p lic
a tio

n
In s tru c to r

m
a na ges

lea rning reso urces

L e a rn e r

find s le arn ing resou rces

Peer-to-Peer Ne twork

a nno ta tes lear nin g res ou rce de sc ription w ith of fer
inf orm ation

de live rs le ar nin g res o urc e

Learning
M anagement

System
m etad a ta rep l ica tion

Broke ra ge
Syste m

m et ad ata

rep lica tio n

Learning
M anagement

System
m etadata

replic atio n

Towards a Modification Exchange Language for Distributed RDF Repositories 239

systems use replication in order to enhance their repositories with content descriptions
of allied systems. In a similar way replicating metadata from a BS to an LMS would
be required, when an LMS aims to provide facilities for querying and presenting
metadata of remote resources via its own user interface.

2.2 Collaborative Annotation

One of the core components of the Semantic Web is to have metadata available in a
machine and human-understandable format. As part of the KAON Framework [0], the
Ontomat annotizer [0] has been developed to tackle this need. It provides facilities for
annotation and annotation-enhanced authoring KAON uses the same format for
metadata and ontology, namely RDF, whose advantages have been agreed on by a
large community of users [0].

On the one hand, realizing high quality markup is perceived to be a crucial aspect
in the context of the Semantic Web [0]. On the other hand, annotation is a time
consuming effort. As a result a collaborative approach for sharing, both, existing
metadata and the annotation work has been proposed [0], which contributes to a
reduction in costs.

Fig. 2. Collaborative metadata authoring by means of notification and modification mechanisms

In order to preserve coherence between institutions, collaboration support for
metadata authoring has to consider decentralization and a high level of heterogeneity.
Indeed, each annotator may have different goals, use different tools and belong to
diverse institutions. The important point is then to allow interaction between
annotating applications and storage components without imposing the need for central
control entities or a specific annotation framework.

Repository

In s tru c to r

L e a rn e r

Pe er-to-Pee r N e tw ork

Repository

Annotation
Tool

Visualization
Tool

In s tru c to r

L e a rn e rRepository

Annotation
Tool

n o tify -m o di fy

n ot ify -m o di fy

Annotation
Tool

Repository
m odif y

not ify

m od ify

rep lic
at io

n

no tify

240 Wolfgang Nejdl et al.

Building on the query mechanism of the EDUTELLA project, the possibility to
retrieve, both, metadata and ontologies has been added to the KAON framework in
order to address collaborative aspects of metadata annotation. In addition, due to the
distributed storage, performing collaborative work requires two important
functionalities: notification and modification. First, other annotators might want to be
notified of any recent change. Second, the metadata may be stored in a dispersed
manner and accessed by annotators. This means that a modification protocol has to be
designed to address the different needs imposed by collaborative annotation.

Collaborative metadata authoring tools can make great use of replication
mechanisms. There are at least two reasons for this: First, performing queries for
dispersed annotations may take too long. Hence, a caching mechanism relying on
metadata replication can improve the overall system performance. Second, in a peer-
to-peer network, peers are not expected to be constantly accessible. Replication would
allow the annotator to have continuing access to previous states of annotation, which
are updated as soon as the source repository becomes accessible again.

3 Design Considerations

Like the Query Exchange Language (QEL) the Modification Exchange Language
(MEL) proposed in this paper is based on RDF. This has several advantages:
• In the spirit of the Semantic Web, messages are self-describing in a format suitable

to be processed by all kinds of RDF tools;
• When stored persistently the messages build a journal of all modifications of a

repository. As such a journal also consists of RDF statements, it can be queried
using QEL queries;

• Existing approaches to describe statements and select RDF subgraphs can be used;
• By encoding the commands1 in the message we avoid the need for a standardized

repository API with operations for each command type.
The drawback of RDF-encoded messages is that the messages become quite bloated,
as reification is needed with its circumstantial syntax.

3.1 Granularity Levels of Modification Commands

In an RDF-based environment several granularity levels of the minimum amount of
metadata which can be addressed by a modification request can be distinguished:
statement, resource with properties (either all properties or restricted by scope) or
subgraphs. Each granularity has certain advantages and drawbacks:
• Statement-centered: Addressing RDF statements is the simplest solution.

However, when updating statements (which will probably be the most frequent
action compared to insert and delete) the lack of statement identifier in RDF causes

1 In the context of RDBMS or other storage systems typically the terms ‘insert/update/delete

statement’ are used. To avoid confusion with RDF statements, we use the term ‘command’
instead.

Towards a Modification Exchange Language for Distributed RDF Repositories 241

difficulties. Essentially only insert and delete commands are available, and the
complete triples have to be sent whenever a statement has to be deleted.

• Resource-centered: If change actions are grouped by resource, the set of all
statements having the same resource as subject becomes the smallest modification
unit. For inserts this leads to the same behavior as with the statement-centered
approach. Delete operations can be performed by just submitting the URI of the
resource. When updating a resource all statements regarding this resource have to
be sent even when only some properties have changed. This is again unavoidable
because of the missing statement identifier. Imagine a repository has stored
(myCourse contributor A), (myCourse contributor B). Then an update statement
arrives stating (myCourse contributor C). How should the resulting contributor set
look like? AC, BC, ABC or C are possible choices, but to enable deletions the last
choice is the only feasible. To avoid sending too much redundant information an
update command could be scoped by a reference to a schema or schema element.

• Subgraph-centered: RDF query languages can deliver the query result as a
subgraph of the repository. Therefore we can design modification commands as a
combination of a query to specify the affected statements and a specification of the
changes to these statements. For example, an update would consist of a query
specifying the changed statement(s) and the description of the new statement(s).
The repository can then change the selected statements accordingly.

For MEL we chose the subgraph-centered approach for the following reasons:
• This approach can handle variables in the modification specifications; while other

approaches require explicit specification of all statements to be changed, this
approach also supports change patterns.

• It enables replacing the object part of a statement without knowing its actual value.
• It integrates nicely with the existing query language QEL, which can be used to

specify the subgraph selection.
In order to avoid the occurrence of inconsistent states of RDF repositories caused by
remote modification commands, atomic modification commands have to be grouped
into transactions. The handling of such transactions is often solved by sending the
modification commands one by one, followed by a commit command. Such a design
requires a stateful communication protocol, which is more complex and requires more
resources than a stateless solution. We prefer the latter, and therefore allow
modification messages to contain multiple commands which possibly form a logical
unit. The repository can process such a message in one chunk, thereby avoiding the
need to store a communication state.

3.2 Replication Design

Replication is a widely discussed topic in computer science and information systems
research. Replication of data is required to increase the performance of a global
information system [0] or enhance the reliability of a storage media [0]. Caching is a
special form of data replication where the emphasize lies on improving the response
time of systems for the most frequently accessed data [0]. It has been shown [0] that
converting passive caches into replicated servers improves transmission times and
results in a more evenly distributed bandwidth usage (because the replicas can be
updated during low-traffic hours). In the context of the Semantic Web replication is

242 Wolfgang Nejdl et al.

an important mechanism for establishing value chains of integrated peers. Metadata
needs to be forwarded from peer A to peer B, because peer B may be capable of
providing a special service (e.g. brokerage of learning resources) peer A (e.g. a
learning management system) is not able to provide.

The following list summarizes design considerations of replication mechanisms:
• Primary design objective: increased availability and reliability;
• Traceability of data providers: traceable vs. anonymous;
• Communication mode: synchronous vs. asynchronous, also called eager replication

vs. lazy replication [0];
• Degree of initial modification distribution: update everywhere vs. primary copy,

also called active vs. passive replication;
• Degree of consistency: strong consistency vs. weak consistency [0].
Our primary design objective of the replication protocol is to increase the availability
of data in order to create value chains of integrated peers.
Currently we assume that the primary copies know their replicas and vice versa.
Providers will be traceable by system; creating a (semi-) anonymous replication
protocol is not a design goal here. Other, more complex, approaches would be:
• The primary copy publishes its changes to replication hubs which distribute them

to the replicas.
• Replicas fetch changes from their primary copies on a scheduled basis.
Synchronous replication requires locking since an update transaction must update
copies before it commits [0]. In a peer-to-peer environment synchronous replication is
not feasible, because of temporary (un)availability of peers. This also supports the
primary copy approach, where the metadata is updated at the repository holding the
primary copy first, and is then distributed to the replicas. To avoid complex
reconciliation procedures, modification commands must be sent to the primary copy
first.

An RDF repository holding replicated metadata from more than one location will
have to preserve the originating context with the metadata for the following reasons:
• Statements from different origins may be contradictory. Merging such statements

into one statement would invalidate the complete repository content. When the
context is preserved, one way to handle such cases would be to return separate
results for each context. A more sophisticated solution could assign trust levels to
replicated repositories and filter statements from less trusted repositories when
contradictions occur.

• When merging repositories without considering their origin, delete and update
actions may lead to undesired effects. One can imagine the following scenario:
Professor X changes from university A to university B. Both universities are
providing meta data about their staff, which are replicated by peer C. As X is now
member of the staff of B, B inserts (among others) the statement (X teaches
Economics) into its repository. This statement is replicated to C. Some time later,
A deletes all statements about X from its repository, among them the statement (X
teaches Economics). This must not result in the deletion of this statement at C
because the statement is also asserted by B. C can handle this case correctly only if
it stores the origins of all statements.

It is also advisable that the replicas know were the primary copy is stored when tight
consistency is needed [0]. For example, a user at the BS intends to book a resource,

Towards a Modification Exchange Language for Distributed RDF Repositories 243

the BS has to check back whether this resource is still available and provide the latest
offer terms. In this case referring back to the primary copy is advisable.

3.3 Annotation Design

As described in the use case above, collaborative metadata authoring requires to be
supported by an distributed environment and without a central control entity. Peer-to-
peer networks address this need.

The heterogeneity problem of the annotation applications and storages can then be
addressed by defining a set of application independent protocols for the exchange of
metadata. However, we saw that exchanging metadata is not sufficient for a
collaborative annotation scenario. A modification protocol should also be designed in
order to allow:

Change notification: Annotators need to be informed of changes which could
influence their annotation work. Basically, they need to know what has been inserted,
updated or deleted. Moreover, the notifications should be as comprehensive and
expressive as possible. Therefore, using the subgraph-centered approach should help
to make modifications more easily visualizable.

Change request: Different annotators using a set of different repositories need a
neutral way to request changes in the metadata that they store. If all use and support
the same modification protocol, the actual task can be left to the implementation of
the repository.

Some modifications might not require that you have specific information about
which object you want to modify. For example, the set of all pages written by a given
author might be marked as ”regularly-updated”.

4 The Modification Exchange Language (MEL)

4.1 Introduction

MEL is based on QEL, which is an RDF representation for Datalog queries. Datalog
is a non-procedural query language based on Horn clauses. In this language a query
consists of literals (predicates expressions describing relations between variables and
constants) and a set of rules [0].

As in SQL we provide the commands insert, delete and update. All commands use
a statement specification to describe the affected statements.
We describe the syntax in an informal notation similar to EBNF (Extended Backus-
Naur Form)2.

statementSpec = subjectSpec propertySpec objectSpec
subjectSpec = subject resourceSpec
propertySpec = property resourceSpec
objectSpec = object (resourceSpec | literalSpec)
resourceSpec = URI

2 EBNF is not well suited for specifying RDF messages formally, because no order of the

statements can and should be prescribed, but it allows a concise description.

244 Wolfgang Nejdl et al.

literalSpec = STRING

A special type of resourceSpec is a variable, which must be declared in the command:
variableDeclaration = hasVariable resourceSpec

4.2 Format of Modification Commands

The Delete command consists of a statement specification and optionally a query
constraint. All statements in the repository matching the specification are deleted. A
constraintSpec can be any QEL query.

deleteCommand = Delete statementSpec {variableDeclaration} [constraintSpec]
The following example deletes all statements with property dc:comment and a subject
of rdf:type …#Book from the repository:

<edu:Delete rdf:about="#delete_cmd">
 <edu:oldStatement rdf:resource="#del_stmt"/>
 <edu:hasVariable rdf:resource="#U"/>
 <edu:hasVariable rdf:resource="#V"/>
 <edu:hasConstraint rdf:resource="#del_constraint"/>
</edu:Delete>

<edu:DeletedStatement rdf:about="#del_stmt">
 <rdf:subject rdf:resource="#U"/>
 <rdf:predicate rdf:resource="&dcq;comment"/>
 <rdf:object rdf:resource="#V"/>
</edu:QueryStatement>

<!-- QEL-1 query -->
<edu:Query rdf:about="#del_constraint">
 <edu:hasVariable rdf:resource="#U"/>
</edu:Query>

<edu:Variable rdf:about="#U">
 <rdf:type rdf:resource="http://www.lit.edu/types#Book"/>
</edu:Variable>

The Insert command syntax is similar to the delete syntax. Here the statement
specification describes the new statements.

insertCommand = Insert statementSpec {variableDeclaration} [constraintSpec]
The simplest case is an insert of one RDF statement:

<edu:Insert rdf:about="#insert_cmd1">
 <edu:newStatement rdf:resource="#insert1_stmt"/>
</edu:Insert>

<edu:InsertedStatement rdf:about="#insert1_stmt">
 <rdf:subject
 rdf:resource="http://www.mylib.org/books#Book37"/>
 <rdf:predicate rdf:resource="&dc;title"/>
 <rdf:object rdf:resource="The Magic of RDF"/>
</edu:QueryStatement>

Towards a Modification Exchange Language for Distributed RDF Repositories 245

It is also possible to insert more than one statement with a single command. Suppose
you want to add a book collection to a library. The following command inserts a new
property lendingState for all resources of type Book, preparing all books for
library business with one statement:

<edu:Insert rdf:about="insert_cmd2">
 <edu:newStatement rdf:resource="#insert2_stmt"/>
 <edu:hasConstraint rdf:resource="#insert2_constraint"/>
 <edu:hasVariable rdf:resource="#W"/>
</edu:Insert>

<edu:InsertedStatement rdf:about="#insert2_stmt">
 <rdf:subject rdf:resource="#W"/>
 <rdf:predicate rdf:resource="&lib;lendingState"/>
 <rdf:object rdf:resource="&lib;available"/>
</edu:QueryStatement>

<edu:Query rdf:about="#insert2_constraint">
 <edu:hasVariable rdf:resource="#W"/>
</edu:Query>

<edu:Variable rdf:about="#W">
 <rdf:type rdf:resource="http://www.lit.edu/types#Book"/>
</edu:Variable>

Update commands require two statement specifications, one for the replaced
statements and one for the replacing statements:

 updateCommand = Update 2*statementSpec {variableDeclaration} [constraintSpec]
The following example updates the modification date of the resource with the title
‘Sample’:

<edu:Update rdf:about="#update_cmd">
 <edu:newStatement rdf:resource="#new_stmt"/>
 <edu:oldStatement rdf:resource="#old_stmt"/>
 <edu:hasConstraint rdf:resource="#update_constraint"/>
 <edu:hasVariable rdf:resource="#X"/>
 <edu:hasVariable rdf:resource="#Y"/>
</edu:Update>

<edu:OriginalStatement rdf:about="#old_stmt">
 <rdf:subject rdf:resource="#X"/>
 <rdf:predicate rdf:resource="&dcq;modified"/>
 <rdf:object rdf:resource="#Y"/>
</edu:QueryStatement>

<edu:InsertedStatement rdf:about="#new_stmt">
 <rdf:subject rdf:resource="#X"/>
 <rdf:predicate rdf:resource="&dcq;modified"/>
 <rdf:object>
 <dcq:W3CDTF>
 <rdf:value>2002-02-03T:15:34:16+01:00</rdf:value>
 </dcq:W3CDTF>
 </rdf:object>
</edu:QueryStatement>

246 Wolfgang Nejdl et al.

<edu:Query rdf:about="#update_constraint">
 <edu:hasVariable rdf:resource="#X"/>
</edu:Query>

<edu:Variable rdf:about="#X">
 <dc:title>Sample</dc:title>
</edu:Variable>

4.3 Format of Modification Messages

Each modification message is identified by a unique message identifier, which
ensures the correct ordering of messages. This identifier is formed of at least two
components (time, identifier of the modification originator) and an optional third one
(request count). The originator identifier is a Universal Unique Identifier (UUID). A
mechanism has to guarantee that UUIDs are unique, for example by combining
hardware addresses, and random seeds. Time is coded using W3C’s version of the
date and time format (http://www.w3.org/TR/NOTE-datetime) with complete date
plus hours, minutes, seconds and time zone designator. If multiple modification
messages are created within a second, a request count can be used to uniquely identify
the request.

messageID = originator timestamp [number]
originator = messageOriginator UUID
timestamp = messageTimestamp W3CDTF
number = messageNumber DIGIT

A modification message can hold multiple synchronization commands, which can be
either an insert, delete or update command. All commands (and other necessary
resources) are identified by a unique local fragment. The commands are contained in
a sequence to preserve the order.

Additional message information can be added, for example when the message was
created and modified for the last time, i.e. closed and prepared for sending it to the
replicating peer. The name of the peer placing the request can also be attached.

message = messageID messageInformation commandList
messageInformation= {originator} {creationTime} {modificationTime}
commandList = {command}
command = insertCommand | updateCommand | deleteCommand
creationTime = W3CDTF
modificationTime = W3CDTF

An example is presented below:

<edu:ModificationMessage rdf:about="#msg1">
 <edu:messageOriginator>
 urn:jxta:uuid-BEFAF79B91504F2FA39FAEFE9C7A4602
 </edu:messageOriginator>

 <edu:messageTimestamp>
 <dcq:W3CDTF>
 <rdf:value>2002-02-03T:15:34:42+01:00</rdf:value>
 </dcq:W3CDTF>

Towards a Modification Exchange Language for Distributed RDF Repositories 247

 </edu:messageTimestamp>

 <edu:hasCommands>
 <rdf:Seq>
 <rdf:_1 rdf:resource="#cmd1"/>

 <rdf:_2 rdf:resource="#cmd2"/>
 <rdf:_3 rdf:resource="#cmd3"/>
 </rdf:Seq>
 </edu:hasCommands>

</edu:ModificationMessage>

The receiving peer responds to the modification message by sending a response
message which contains information about the update success.

5 Related Work

Several Web initiatives are currently extended with replication or modification
protocols.

The Replication Architecture of the Lightweight Directory Access Protocol
(LDAP) distinguishes between different replica types [0]. Each replica type has a
certain set of operations assigned, which it is allowed to carry out. For example, the
primary replica provides a full copy of the replica, to which all applications that
require tight consistency direct their operations. On the contrary fractional replica
accept only read-only LDAP operations. Introducing a hierarchy of replica peer types
is worthwhile to consider in future versions of MEL.

The Universal Description, Discovery and Integration (UDDI) architecture [0]
specifies the data replication process and interface required to achieve data replication
between UDDI operators. The replication process makes use of XML. UDDI relies on
SOAP, which provides the mechanism for using XML in simple message-based
exchanges. UDDI operators sent controlled XML messages in order to communicate
change records requests. The underlying message architecture is rather simple, as for
example compared to LDAP, and does not support any semantically rich, self-
containing messages.

The rdfDB Query Language [0] is a high level query language with a query syntax
similar to SQLas far as selects are concerned. rdfDB provides modification
commands according to the statement-centered approach: insert and delete commands
which take lists of statements as an argument are available. Variables cannot be used
within these commands.

Several other query languages are derived from rdfDB, e.g. RDQL [0] which is
part of the Jena framework [0] and Inkling [0]. Interestingly, all of them have
abandoned insert and delete and provide query capabilities only.

ANNOTEA is a client/server system for the creation of annotations [0]. All
commands are sent to the server via HTTP. Commands to insert, update and delete
annotations are provided, and a separate query language (Algae) is available. All
messages are represented in RDF, enclosed in a HTTP PUT request. ANNOTEA uses
the resource-centered approach. For insert as well as for update, the client sends all
statements describing one resource in one chunk to the server. Update deletes all
existing statements regarding the resource before inserting the sent statements. A

248 Wolfgang Nejdl et al.

delete message contains just the resource URI; the server deletes all statements where
this resource is subject.

RQL [0] is a highly developed RDF query language used in RDFSuite [0] and
Sesame [0]. It provides no modification commands, because in these systems
repository modification is done through a special API.

TRIPLE [0] is an RDF query and transformation language based on frame logic,
also without modification support.

6 Concluding Remarks

In this paper, we have discussed replication and annotation in a peer-to-peer network
and extended QEL, the query language specified for EDUTELLA, with additional
modification capabilities. We believe that standardizing a modification exchange
language, such as the one proposed in this paper, will contribute to the evolution of
the Semantic Web idea. Our work is a first step in this direction; we have not yet
treated all necessary aspects for these services. For example, the question of how to
authorize modification commands is an issue, which still has to be addressed. In
addition a full validation of the use cases sketched still has to be carried out.

References

1. J. Helfin and J. Hendler. A Portrait of the Semantic Web in Action. IEEE Intelligent
Systems, 16 (2), 54-59, 2001.

2. Wolfgang Nejdl, Boris Wolf, Changtao Qu_, Stefan Decker_, Michael Sintek, Ambjörn
Naeve, Mikael Nilsson, Matthias Palmér_ and Tore Risch. EDUTELLA: A P2P Networking
Infrastructure Based on RDF. Accepted for WWW2002, 2002.

3. L. Gong. Project JXTA: A Technology Overview. Sun Microsystems, Palo Alto, 2001.
4. B. Wiley. Interoperability Through Gateways. In: A. Oram (ed.), Peer-to-Peer - Harnessing

the Power of Disruptive Technologies. O’Reilly, 2001.
5. I. Jacobsen and M. Christensen. Object-Oriented Software Engineering: A Use-Case Driven

Approach. Addison-Wesley, Reading, 1992.
6. B. Simon. Faculty Members Meeting Electronic Education Markets - Determinants for

Project Success. Working Paper, Department of Information Systems,
Wirtschaftsuniversität Wien, Vienna, 2001.

7. S. Guth, G. Neumann and B. Simon. UNIVERSAL - Design Spaces for Learning Media.
In: R. H. Sprague (ed.). Proceedings of the 34th Hawaii International Conference on
System Sciences, 2001.

8. S. Brantner, T. Enzi, S. Guth, G. Neumann and B. Simon. UNIVERSAL - Design and
Implementation of a Highly Flexible E-Market Place of Learning Resources. In: R. Hartley,
Kinshuk, T. Okamoto and J. P. Klus (ed.). Proceedings of the IEEE International
Conference on Advanced Learning Technologies, 2001.

9. The Karlsruhe Ontology and Semantic Web Tool Suite. http://kaon.aifb.uni-karlsruhe.de,
2001.

10. S. Handschuh, S. Staab and A. Mädche: CREAM - Creating relational metadata with a
component-based, ontology-driven annotation framework. In: ACM K-CAP 2001. October,
Vancouver, 2001.

11. S. Handschuh and S. Staab. Authoring and Annotation of Web Pages in CREAM. Accepted
for WWW2002, 2002.

Towards a Modification Exchange Language for Distributed RDF Repositories 249

12. J. Hendler. Agents and the Semantic Web. IEEE Intelligent Systems, 16 (2), 30-37, 2001.
13. L. Qiu, V. N. Padmanabham, and G. M. Voelker. On the placement of web server replicas.

In Proc. 20th IEEE INFOCOM, 2001.
14. B. Liskov, S. Ghemawat, R. Gruber, P. Johns, L. Shrira and M. Williams. Replication in the

Harp file system. In: Proceedings of the 13th ACM Symposium on Operating Systems
Principles, 1991.

15. R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Considerations for Distributed Caching
on the Internet. In Proceedings of the Twentieth International Conference on Distributed
Computing Systems, 1999.

16. M. Baentsch, L. Baum, G. Molter, S. Rothkugel and P. Sturm. Enhancing the Web’s
Infrastructure – From Caching to Replication. IEEE Internet Computing, 1(2):18--27, Mar.
1997.

17. J. Gray, P. Helland, P. O'Neil and D. Shasha. The dangers of replication and a solution. In:
Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data,
1996.

18. M. Wiesmann, F. Pedone, A. Schiper, B. Kemme and G. Alonso. Understanding replication
in databases and distributed systems. In: Proceedings of 20th International Conference on
Distributed Computing Systems (ICDCS'2000), Taipei, Taiwan, R.O.C. IEEE Computer
Society Los Alamitos California, 2000.

19. B. Kemme and G. Alonso. A suite of database replication protocols based on group
communication primitives. In: Proceedings of the 18th International Conference on
Distributed Computing Systems (ICDCS), Amsterdam, The Netherlands, 1998.

20. J. Merrells, E, Reed, U. Srinivasan. LDAP Replication Architecture. IETF Internet Draft.
http://www.ietf.org/internet-drafts/draft-ietf-ldup-model-06.txt, 2000.

21. R. Atkinson and J. Munter (eds.).UDDI Version 2.0 Replication Specification. uddi.org
(2001). Available at http://www.uddi.org/pubs/Replication-V2.00-Open-20010608.pdf

22. R. V. Guha. RDFDB QL. http://web1.guha.com/rdfdb/query.html.
23. Andy Seaborne. RDQL - RDF Data Query Language. http://hpl.hp.com/semweb/rdql.html, 2001.
24. Brian McBride. Jena: Implementing the RDF Model and Syntax Specification. http://www-

uk.hpl.hp.com/people/bwm/papers/20001221-paper/, 2000.
25. L. Miller. Inkling: RDF query using SquishQL. http://swordfish.rdfweb.org/rdfquery/ 2001.
26. J. Kahan, M. Koivunen, E. Prud'Hommeaux and R. Swick. Annotea: An Open RDF

Infrastructure for Shared Web Annotations. In Proc. of the WWW10 International
Conference. Hong Kong, 2001.

27. G. Karvounarakis, V. Christophides, D. Plexousakis and S. Alexaki. Querying
CommunityWeb Portals. In: Proc. 17ièmes Journees Bases de Donnees Avancees (BDA'01),
Agadir, Maroc, 2001.

28. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis and K. Tolle. The
RDFSuite: Managing Voluminous RDF Description Bases. In: Proc. of the 2nd Int.
Workshop on the Semantic Web, Hong-Kong, 2001.

29. J. Broekstra, A. Kampman and F. van Harmelen. Sesame: An Architecture for Storing and
Querying RDF Data and Schema Information. In: D. Fensel, J. Hendler, H. Lieberman and
W. Wahlster (eds.). Semantics for the WWW. MIT Press, 2001.

30. Michael Sintek and Stefan Decker. TRIPLE – An RDF Query, Inference, and
Transformation Language. Deductive Databases and Knowledge Management Workshop
(DDLP’2001), Japan, 2001.

	1 Introduction
	2 Use Cases
	2.1 Integrated Systems for Teaching and Learning
	2.2 Collaborative Annotation

	3 Design Considerations
	3.1 Granularity Levels of Modification Commands
	3.2 Replication Design
	3.3 Annotation Design

	4 The Modification Exchange Language (MEL)
	4.1 Introduction
	4.2 Format of Modification Commands
	4.3 Format of Modification Messages

	5 Related Work
	6 Concluding Remarks
	References

