Skip to main content

Aqueous Solutions of Algorithmic Problems: Emphasizing Knights on a 3 × 3

  • Conference paper
  • First Online:
DNA Computing (DNA 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2340))

Included in the following conference series:

Abstract

A pattern for performing several DNA computations is outlined using the aqueous approach, the essence of which is writing on molecules dissolved in water. Four of the indicated computations have been carried out in wet labs in the aqueous style. As an illustration, gel photos will be exhibited that confirm the correctness of a small SAT computation. Emphasis will be placed on the aqueous approach, now in progress, to the problem of producing the set of all patterns in which knights can be placed on a 3 × 3 chessboard with no knight attacking another. Currently the writing technology used is based on molecular biology. In the future we hope that light can replace biochemistry as the writing procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Adleman, Molecular computation of solutions of combinatorial problems, Science, 266(1994)1021–1024.

    Article  Google Scholar 

  2. G.L. Centoni, Biological methylation: selected aspects, Annual Review of Biochemistry 44 (1975), 435–451.

    Article  Google Scholar 

  3. D. Faulhammer, A.R. Cukras, R.J. Lipton & L.F. Landweber, Proc. Nat. Acad. Sci. 97 (2000), 1385–1389.

    Article  Google Scholar 

  4. M.R. Garey & D.S. Johnson, Computers and Intractability — A Guide to the Theory of’ NP-Completeness, W.H. Freeman, San Francisco, CA, (1979).

    MATH  Google Scholar 

  5. T. Head, Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors, Bull. Math. Bio. 49 (1987), 737–759.

    MATH  MathSciNet  Google Scholar 

  6. T. Head, Circular suggestions for DNA computing, in: A. Carbone, M. Gromov & P. Pruzinkiewicz, Eds., Pattern Formation in Biology, Vision and Dynamics, World Scientific, Singapore and London, (2000), 325–335.

    Google Scholar 

  7. T. Head, Splicing systems, aqueous computing, and beyond, in: I. Antoniou, C.S. Calude & M.J. Dinneen, Eds., Unconventional Models of Computation, UMC’2K, Springer-Verlag, London, (2001).

    Google Scholar 

  8. T. Head, Writing by methylation proposed for aqueous computing, Chapter 31 in: C. Martin-Vide & V. Mitrana, Eds., Where Mathematics, Computer Science, Linguistics and Biology Meet, (2001), 353–360.

    Google Scholar 

  9. T. Head, Biomolecular realizations of a parallel architecture for solving combinatorial problems, (to appear).

    Google Scholar 

  10. T. Head, Finding bijections with DNA, (to appear).

    Google Scholar 

  11. T. Head, Gh. Paun & D. Pixton, Language theory and molecular genetics: generative mechanisms suggested by DNA recombination, a chapter in: G. Rozenberg & A. Salomaa, Eds., Handbook of Formal Languages, vol. 2, Springer, New York, 1996, pp. 295–360.

    Google Scholar 

  12. T. Head, G. Rozenberg, R.S. Bladergroen, C.K.D. Breek, P.H.M. Lommerse & H. Spaink, Computing with DNA by operating on plasmids, BioSystems 57 (2000), 87–93.

    Article  Google Scholar 

  13. T. Head, M. Yamamura & S. Gal, Aqueous computing: writing on molecules, in: Proceedings of the Congress on Evolutionary Computing, IEEE Service Center, Piscataway, NJ, (1999), 1006–1010.

    Google Scholar 

  14. Q. Ouyang, P.D. Kaplan, S. Liu & A. Libchaber, DNA solution of the maximal clique problem, Science (1997), 446–449.

    Google Scholar 

  15. Gh. Paun, G. Rozenberg & A. Salomaa, DNA Computing — New Computing Paradigms, Springer Verlag, Berlin (1998).

    MATH  Google Scholar 

  16. P.W.K. Rothemund, A DNA and restriction enzyme implementation of Turing machines, in: DIM ACS Series in Discrete Math. & Theor. Comp. Sci., vol. 27, Amer. Math. Soc., Providence, RI, (1996).

    Google Scholar 

  17. M. Yamamura, T. Head & S. Gal, Aqueous computing-mathematical principles of molecular memory and its biomolecular implementation, Chap. 2 in: Hiroaki Kitano, Ed., Genetic Algorithms 4 (2000), 49–73. (In Japanese).

    Google Scholar 

  18. M. Yamamura, Y. Hiroto, T. Matoba, Another realization of aqueous computing with peptide nucleic acid, (This Proceedings, 2001).

    Google Scholar 

  19. H. Yoshida & A. Suyama, Solution to 3SAT by breadth first search, in: DIM ACS Series in Discrete Math. & Theor. Comp. Sci., vol. 54, Amer. Math. Soc., Providence, RI, (2000), 9–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Head, T., Chen, X., Nichols, M.J., Yamamura, M., Gal, S. (2002). Aqueous Solutions of Algorithmic Problems: Emphasizing Knights on a 3 × 3. In: Jonoska, N., Seeman, N.C. (eds) DNA Computing. DNA 2001. Lecture Notes in Computer Science, vol 2340. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48017-X_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-48017-X_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43775-8

  • Online ISBN: 978-3-540-48017-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics